13 research outputs found

    Modélisation, purification et caractérisation des modules et domaines de la PI4KA humaine

    Get PDF
    The eukaryotic lipid kinase phosphatidylinositol 4-kinase III alpha is a ubiquitous enzyme that synthesizes the plasma membrane pool of phosphatidylinositol 4-phosphate. This important phosphoinositide has key roles in different signalization pathways, vesicular traffic and cellular compartment identity. Moreover, PI4KA is an essential factor for hepatitis C virus (HCV) replication. Indeed, PI4KA's interaction with the non-structural HCV protein NS5A at the endoplasmic reticulum membrane leads to formation of a “membranous web” giving to the membrane the signature necessary to the formation of viral replication machineryPI4KA is a large protein (2102 residues, 240 kDa for human PI4KA) with the kinase domain making up the ca 400 C-terminal residues preceded by an Armadillo domain for which no function is known. There is essentially no structural information about the 1500 N-terminal residues and no clue as to the function of most of this region of PI4KA.We use computational methods in order to delineate fragments of human PI4KA amenable to soluble production in Escherichia coli and insect cells. We clone and express these fragments and evaluate the soluble fraction of each construction. Our results further suggest that PI4KA can be described as a two-module protein. The N-terminal module (1100 residues), is composed of two domains which one is an alpha solenoid. Their potential arrangement was defined by small angle X-ray scattering (SAXS).The second module (1000 residues), the C-terminal module, is the core enzyme. Its analysis leads us to identify similarities with the serine/threonine kinases PIKKs, as mTor, homologous to phosphatidylinositol-3-kinases. Three putative domains were delineate at the beginning of this C-terminal module. We name the DI, DII and DIII. Our collaborators have shown their necessity to the kinase activity of PI4KA and the HCV replication. DI domain was characterized and allowed the validation of a new parametrization of the N, N-dimethyl-dodecylamine oxide molecule (LDAO) for simulation of molecular dynamics. Finally, the full-length human PI4KA was expressed in insect cells, purified and a first interaction experiment with membranes have been initiated.La phosphatidylinositol-4-kinase de type IIIα est une kinase de lipide eukaryote ubiquitaire qui synthĂ©tise le phosphatidylinositol-4-phosphate PtdIns(4)P de la membrane plasmique. Ce phosphoinositide est d’autant plus important qu’il tient un rĂŽle majeur dans diffĂ©rentes voies de signalisation cellulaire, le traffic vĂ©siculaire ainsi que dans l’identitĂ© des organelles. De plus, la PIK4A humaine est un facteur essentiel pour la rĂ©plication du virus de l’hĂ©patite C (VHC). En effet, le recrutement du complexe de rĂ©plication du VHC par la protĂ©ine virale NS5A Ă  la membrane du reticulum endoplasmique permet la formation d’un rĂ©seau membranaire Ă  l’origine de la structuration des complexes de replication viraux.La PI4KA est une kinase imposante (2102 rĂ©sidus, 240 kDa pour la PI4KA humaine) qui possĂšde un domaine kinase C-terminal d’environ 400 rĂ©sidus prĂ©cĂ©dĂ© d’un domaine formĂ© de rĂ©pĂ©titions Armadillo pour lequel aucune fonction n’a Ă©tĂ© determinĂ©e. Le rĂŽle ainsi que le repliement des 1500 rĂ©sidus N-terminaux de PI4KA ne sont pas connus Ă  ce jour.Afin d’en savoir plus sur la structure tri-dimensionnelle de la PI4KA humaine, nous avons utilisĂ© des outils bio-informatiques afin de dĂ©limiter et de modĂ©liser les modules et domaines la composant. Nous avons pu ainsi les exprimer et les produire en bactĂ©rie et en cellules d’insecte afin de vĂ©rifier nos hypothĂšses. Nous avons pu conclure que PI4KA est composĂ©e de deux modules. Le module N-terminal (1100 rĂ©sidus), est composĂ© de deux domaines dont un solĂ©noĂŻde α. Les rĂ©sultats obtenus par diffusion des rayons X aux petits angles (SAXS) nous permettent de dĂ©finir leur agencement potentiel. Le second module (1000 rĂ©sidus), le module C-terminal, est l’enzyme-core. Son analyse nous a permis d’identifier une similitude remarquable avec les sĂ©rine/thrĂ©onine kinases PIKKs, comme mTor, apparentĂ©es aux phosphatidylinositol-3-kinases. Nous avons dĂ©fini au dĂ©but du module C-terminal de PI4KA trois domaines putatifs que nous avons nommĂ©s DI, DII et DIII. Nos collaborateurs ont montrĂ© qu'ils sont essentiels Ă  l’activitĂ© kinase de la protĂ©ine ainsi qu’à la replication du VHC. Le domaine DI a Ă©tĂ© caractĂ©risĂ© et a permis la validation d’une nouvelle paramĂ©trisation de la molĂ©cule de N, N-dimethyl-dodecylamine oxide (LDAO) pour des simulations de dynamique molĂ©culaire. Enfin, la PI4KA humaine dans son entier a Ă©tĂ© exprimĂ©e en cellules d’insecte puis purifiĂ©e, et un premier test d’interaction avec les membranes a Ă©tĂ© initiĂ©

    Molecular modeling, purification and characterisation of the human PI4KA modules and domains

    No full text
    La phosphatidylinositol-4-kinase de type IIIα est une kinase de lipide eukaryote ubiquitaire qui synthĂ©tise le phosphatidylinositol-4-phosphate PtdIns(4)P de la membrane plasmique. Ce phosphoinositide est d’autant plus important qu’il tient un rĂŽle majeur dans diffĂ©rentes voies de signalisation cellulaire, le traffic vĂ©siculaire ainsi que dans l’identitĂ© des organelles. De plus, la PIK4A humaine est un facteur essentiel pour la rĂ©plication du virus de l’hĂ©patite C (VHC). En effet, le recrutement du complexe de rĂ©plication du VHC par la protĂ©ine virale NS5A Ă  la membrane du reticulum endoplasmique permet la formation d’un rĂ©seau membranaire Ă  l’origine de la structuration des complexes de replication viraux.La PI4KA est une kinase imposante (2102 rĂ©sidus, 240 kDa pour la PI4KA humaine) qui possĂšde un domaine kinase C-terminal d’environ 400 rĂ©sidus prĂ©cĂ©dĂ© d’un domaine formĂ© de rĂ©pĂ©titions Armadillo pour lequel aucune fonction n’a Ă©tĂ© determinĂ©e. Le rĂŽle ainsi que le repliement des 1500 rĂ©sidus N-terminaux de PI4KA ne sont pas connus Ă  ce jour.Afin d’en savoir plus sur la structure tri-dimensionnelle de la PI4KA humaine, nous avons utilisĂ© des outils bio-informatiques afin de dĂ©limiter et de modĂ©liser les modules et domaines la composant. Nous avons pu ainsi les exprimer et les produire en bactĂ©rie et en cellules d’insecte afin de vĂ©rifier nos hypothĂšses. Nous avons pu conclure que PI4KA est composĂ©e de deux modules. Le module N-terminal (1100 rĂ©sidus), est composĂ© de deux domaines dont un solĂ©noĂŻde α. Les rĂ©sultats obtenus par diffusion des rayons X aux petits angles (SAXS) nous permettent de dĂ©finir leur agencement potentiel. Le second module (1000 rĂ©sidus), le module C-terminal, est l’enzyme-core. Son analyse nous a permis d’identifier une similitude remarquable avec les sĂ©rine/thrĂ©onine kinases PIKKs, comme mTor, apparentĂ©es aux phosphatidylinositol-3-kinases. Nous avons dĂ©fini au dĂ©but du module C-terminal de PI4KA trois domaines putatifs que nous avons nommĂ©s DI, DII et DIII. Nos collaborateurs ont montrĂ© qu'ils sont essentiels Ă  l’activitĂ© kinase de la protĂ©ine ainsi qu’à la replication du VHC. Le domaine DI a Ă©tĂ© caractĂ©risĂ© et a permis la validation d’une nouvelle paramĂ©trisation de la molĂ©cule de N, N-dimethyl-dodecylamine oxide (LDAO) pour des simulations de dynamique molĂ©culaire. Enfin, la PI4KA humaine dans son entier a Ă©tĂ© exprimĂ©e en cellules d’insecte puis purifiĂ©e, et un premier test d’interaction avec les membranes a Ă©tĂ© initiĂ©.The eukaryotic lipid kinase phosphatidylinositol 4-kinase III alpha is a ubiquitous enzyme that synthesizes the plasma membrane pool of phosphatidylinositol 4-phosphate. This important phosphoinositide has key roles in different signalization pathways, vesicular traffic and cellular compartment identity. Moreover, PI4KA is an essential factor for hepatitis C virus (HCV) replication. Indeed, PI4KA's interaction with the non-structural HCV protein NS5A at the endoplasmic reticulum membrane leads to formation of a “membranous web” giving to the membrane the signature necessary to the formation of viral replication machineryPI4KA is a large protein (2102 residues, 240 kDa for human PI4KA) with the kinase domain making up the ca 400 C-terminal residues preceded by an Armadillo domain for which no function is known. There is essentially no structural information about the 1500 N-terminal residues and no clue as to the function of most of this region of PI4KA.We use computational methods in order to delineate fragments of human PI4KA amenable to soluble production in Escherichia coli and insect cells. We clone and express these fragments and evaluate the soluble fraction of each construction. Our results further suggest that PI4KA can be described as a two-module protein. The N-terminal module (1100 residues), is composed of two domains which one is an alpha solenoid. Their potential arrangement was defined by small angle X-ray scattering (SAXS).The second module (1000 residues), the C-terminal module, is the core enzyme. Its analysis leads us to identify similarities with the serine/threonine kinases PIKKs, as mTor, homologous to phosphatidylinositol-3-kinases. Three putative domains were delineate at the beginning of this C-terminal module. We name the DI, DII and DIII. Our collaborators have shown their necessity to the kinase activity of PI4KA and the HCV replication. DI domain was characterized and allowed the validation of a new parametrization of the N, N-dimethyl-dodecylamine oxide molecule (LDAO) for simulation of molecular dynamics. Finally, the full-length human PI4KA was expressed in insect cells, purified and a first interaction experiment with membranes have been initiated

    Definition and expression in E. coli of large fragments from the human lipid kinase phosphatidylinositol 4-kinase type III alpha, and purification of a 1100-residue N-terminal module.

    No full text
    International audienceThe eukaryotic lipid kinase phosphatidylinositol 4-kinase III alpha (PI4KA in higher eukaryotes) is a ubiquitous enzyme that synthesizes the plasma membrane pool of phosphatidylinositol 4-phosphate. This important phosphoinositide has key roles in different signalization pathways, vesicular traffic and cellular compartment identity. Moreover, human PI4K4A is an essential factor for hepatitis C virus replication. PI4KA is a large protein (2102 residues for human PI4KA) with the kinase domain making up the ca 400 C-terminal residues. There is essentially no structural information about the 1500N-terminal residues and no clue as to the function of most of this region of PI4KA. In this report, we use computational methods in order to delineate fragments of human PI4KA amenable to soluble production in Escherichia coli. We clone and express these fragments as GST-fusions and evaluate the soluble fraction of each protein. Finally, we produce and purify to homogeneity a 1100-residue PI4KA N-terminal fragment. Our results further suggest that PI4KA can be described as a two-module protein. They open the way to structural characterization of the N-terminal regulatory module of PI4KA

    Derivation of original RESP atomic partial charges for MD simulations of the LDAO surfactant with AMBER: applications to a model of micelle and a fragment of the lipid kinase PI4KA.

    No full text
    International audienceIn this paper, we describe the derivation and the validation of original RESP atomic partial charges for the N, N-dimethyl-dodecylamine oxide (LDAO) surfactant. These charges, designed to be fully compatible with all the AMBER force fields, are at first tested against molecular dynamics simulations of pure LDAO micelles and with a fragment of the lipid kinase PIK4A (DI) modeled with the QUARK molecular modeling server. To model the micelle, we used two distinct AMBER force fields (i.e. Amber99SB and Lipid14) and a variety of starting conditions. We find that the micelle structural properties (such as the shape, size, the LDAO headgroup hydration, and alkyl chain conformation) slightly depend on the force field but not on the starting conditions and more importantly are in good agreement with experiments and previous simulations. We also show that the Lipid14 force field should be used instead of the Amber99SB one to better reproduce the C(sp3)C(sp3)C(sp3)C(sp3) conformation in the surfactant alkyl chain. Concerning the simulations with LDAO-DI protein, we carried out different runs at two NaCl concentrations (i.e. 0 and 300 mM) to mimic, in the latter case, the experimental conditions. We notice a small dependence of the simulation results with the LDAO parameters and the salt concentration. However, we find that in the simulations, three out of four tryptophans of the DI protein are not accessible to water in agreement with our fluorescence spectroscopy experiments reported in the paper

    Synergistic role of nucleotides and lipids for the self-assembly of Shs1 septin oligomers

    No full text
    International audienceBudding yeast septins are essential for cell division and polarity. Septins assemble as palindromic linear octameric complexes. The function and ultra-structural organization of septins are finely governed by their molecular polymorphism. In particular, in budding yeast, the end subunit can stand either as Shs1 or Cdc11. We have dissected, here, for the first time, the behavior of the Shs1 protomer bound to membranes at nanometer resolution, in complex with the other septins. Using electron microscopy, we have shown that on membranes, Shs1 protomers self-assemble into rings, bundles, filaments or two-dimensional gauzes. Using a set of specific mutants we have demonstrated a synergistic role of both nucleotides and lipids for the organization and oligomerization of budding yeast septins. Besides, cryo-electron tomography assays show that vesicles are deformed by the interaction between Shs1 oligomers and lipids. The Shs1-Shs1 interface is stabilized by the presence of phosphoinositides, allowing the visualization of micro-metric long filaments formed by Shs1 protomers. In addition, molecular modeling experiments have revealed a potential molecular mechanism regarding the selectivity of septin subunits for phosphoinositide lipids

    Insights into animal septins using recombinant human septin octamers with distinct SEPT9 isoforms

    No full text
    Septin GTP-binding proteins contribute essential biological functions that range from the establishment of cell polarity to animal tissue morphogenesis. Human septins in cells form hetero-octameric septin complexes containing the ubiquitously expressed SEPT9 subunit (also known as SEPTIN9). Despite the established role of SEPT9 in mammalian development and human pathophysiology, biochemical and biophysical studies have relied on monomeric SEPT9, thus not recapitulating its native assembly into hetero-octameric complexes. We established a protocol that enabled, for the first time, the isolation of recombinant human septin octamers containing distinct SEPT9 isoforms. A combination of biochemical and biophysical assays confirmed the octameric nature of the isolated complexes in solution. Reconstitution studies showed that octamers with either a long or a short SEPT9 isoform form filament assemblies, and can directly bind and cross-link actin filaments, raising the possibility that septin-decorated actin structures in cells reflect direct actin-septin interactions. Recombinant SEPT9-containing octamers will make it possible to design cell-free assays to dissect the complex interactions of septins with cell membranes and the actin and microtubule cytoskeleton.Accepted Author ManuscriptBN/Gijsje Koenderink La

    Septin 9 has Two Polybasic Domains Critical to Septin Filament Assembly and Golgi Integrity

    No full text
    International audienceSeptins are GTP-binding proteins involved in several membrane remodeling mechanisms. They associate with membranes, presumably using a polybasic domain (PB1) that interacts with phosphoinositides (PIs). Membrane-bound septins assemble into microscopic structures that regulate membrane shape. How septins interact with PIs and then assemble and shape membranes is poorly understood. Here, we found that septin 9 has a second polybasic domain (PB2) conserved in the human septin family. Similar to PB1, PB2 binds specifically to PIs, and both domains are critical for septin filament formation. However, septin 9 membrane association is not dependent on these PB domains, but on putative PB-adjacent amphipathic helices. The presence of PB domains guarantees protein enrichment in PI-contained membranes, which is critical for PI-enriched organelles. In particular, we found that septin 9 PB domains control the assembly and functionality of the Golgi apparatus. Our findings offer further insight into the role of septins in organelle morphology

    Septin 9 induces lipid droplets growth by a phosphatidylinositol-5-phosphate and microtubule-dependent mechanism hijacked by HCV

    Get PDF
    International audienceThe accumulation of lipid droplets (LD) is frequently observed in hepatitis C virus (HCV) infection and represents an important risk factor for the development of liver steatosis and cirrhosis. The mechanisms of LD biogenesis and growth remain open questions. Here, transcriptome analysis reveals a significant upregulation of septin 9 in HCV-induced cirrhosis compared with the normal liver. HCV infection increases septin 9 expression and induces its assembly into filaments. Septin 9 regulates LD growth and perinuclear accumulation in a manner dependent on dynamic microtubules. The effects of septin 9 on LDs are also dependent on binding to PtdIns5P, which, in turn, controls the formation of septin 9 filaments and its interaction with microtubules. This previously undescribed cooperation between PtdIns5P and septin 9 regulates oleate-induced accumulation of LDs. Overall, our data offer a novel route for LD growth through the involvement of a septin 9/PtdIns5P signalling pathway
    corecore