557 research outputs found

    Multiwavelength Observations of Massive Stellar Cluster Candidates in the Galaxy

    Get PDF
    The Galaxy appears to be richer in young, massive stellar clusters than previously known, due to advances in infrared surveys which have uncovered deeply embedded regions of star formation. Young, massive clusters can significantly impact the surrounding interstellar medium (ISM) and hence radio observations can also be an important tracer of their activity. Several hundred cluster candidates are now known by examining survey data. Here we report on multiwavelength observations of six of these candidates in the Galaxy. We carried out 4.9 and 8.5 GHz VLA observations of the radio emission associated with these clusters to obtain the physical characteristics of the surrounding gas, including the Lyman continuum photon flux and ionized gas mass. Spitzer Infrared Array Camera observations were also made of these regions, and provide details on the stellar population as well as the dust continuum and polycyclic aromatic hydrocarbon emission. When compared to the known young, massive clusters in the Galaxy, the six cluster candidates have less powerful Lyman ionizing fluxes and ionize less of the H II mass in the surrounding ISM. Therefore, these cluster candidates appear to be more consistent with intermediate-mass clusters (10^3-10^4 Msun).Comment: 39 pages, 20 figures. Accepted in the Astronomical Journal; to be published Fall 201

    Near-Infrared H2 and Continuum Survey of Extended Green Objects

    Get PDF
    The Spitzer GLIMPSE survey has revealed a number of "Extended Green Objects" (EGOs) which display extended emission at 4.5 micron. These EGOs are potential candidates for high mass protostellar outflows. We have used high resolution (< 1") H2 1-0 S(1) line, K, and H-band images from the United Kingdom Infrared Telescope to study 34 EGOs to investigate their nature. We found that 12 EGOs exhibit H2 outflows (two with chains of H2 knotty structures; five with extended H2 bipolar structures; three with extended H2 lobes; two with pairs of H2 knots). In the 12 EGOs with H2 outflows, three of them exhibit similar morphologies between the 4.5 micron and H2 emission. However, the remaining 9 EGOs show that the H2 features are more extended than the continuum features, and the H2 emission is seldom associated with continuum emission. Furthermore, the morphologies of the near-infrared continuum and 4.5 micron emission are similar to each other for those EGOs with K-band emission, implying that at least a part of the IRAC-band continuum emission of EGOs comes from scattered light from the embedded YSOs.Comment: accepted for publication in ApJ

    Near-infrared H2 and continuum survey of extended green objects. II. Complete census for the northern Galactic plane

    Get PDF
    We discuss 94 Extended Green Objects (EGOs) in the northern Galactic plane cataloged by Cyganowski et al., based on near-infrared narrow H2 (2.122 μm) and continuum observations from the United Kingdom Infrared Telescope. This data set is three times larger than the one in our previous study and is unbiased by preselection. As discussed in the previous paper, the morphologies of the 4.5 μm emission generally resemble those of the near-infrared continuum, but are different from those of the H2 emission. Of our sample, only 28% of EGOs with H2 emission show similar morphologies between 4.5 μm and H2 emission. These results suggest that the 4.5 μm emission mainly comes from scattered continuum from the embedded young stellar objects, and partially from H2 emission. About half of EGOs are associated with H2 outflows, if the H 2 outflow incompleteness is considered. The H2 outflow detection rate for EGOs with K-band detections (61%) is significantly higher than for those without K-band detections (36%). This difference may be due to the fact that both H2 and K-band emissions are associated with outflows, i.e., H2 emission and K-band continuum are associated with shocks and outflow cavities, respectively. We also compared the correlation between the H2 outflows and Class I 44 GHz methanol masers from the literature. The methanol masers can be located upstream or downstream of the H2 outflows and some bright H2 spots or outflows are not associated with methanol masers, suggesting that methanol masers and H 2 emission trace different excitation conditions. © 2013. The American Astronomical Society. All rights reserved.

    A Detailed Study of Spitzer-IRAC Emission in Herbig-Haro Objects (I): Morphology and Flux Ratios of Shocked Emission

    Full text link
    We present a detailed analysis of Spitzer-IRAC images obtained toward six Herbig-Haro objects (HH 54/211/212, L 1157/1448, BHR 71). Our analysis includes: (1) comparisons in morphology between the four IRAC bands (3.6, 4.5, 5.8 and 8.0 um), and H2 1-0 S(1) at 2.12 um for three out of six objects; (2) measurements of spectral energy distributions (SEDs) at selected positions; and (3) comparisons of these results with calculations of thermal H2 emission at LTE (207 lines in four bands) and non-LTE (32-45 lines, depending on particle for collisions). We show that the morphologies observed at 3.6 and 4.5 um are similar to each other, and to H2 1-0 S(1). This is well explained by thermal H2 emission at non-LTE if the dissociation rate is significantly larger than 0.002-0.02, allowing thermal collisions to be dominated by atomic hydrogen. In contrast, the 5.8 and 8.0 um emission shows different morphologies from the others in some regions. This emission appears to be more enhanced at the wakes in bow shocks, or less enhanced in patchy structures in the jet. These tendencies are explained by the fact that thermal H2 emission in the 5.8 and 8.0 um band is enhanced in regions at lower densities and temperatures. Throughout, the observed similarities and differences in morphology between four bands and 1-0 S(1) are well explained by thermal H2 emission. The observed SEDs are categorized into:- (A) those in which the flux monotonically increases with wavelength; and (B) those with excess emission at 4.5-um. The type-A SEDs are explained by thermal H2 emission, in particular with simple shock models with a power-law cooling function. Our calculations suggest that the type-B SEDs require extra contaminating emission in the 4.5-um band. The CO vibrational emission is the most promising candidate, and the other contaminants discussed to date are not likely to explain the observed SEDs.Comment: 35 pages, 21 figures, 6 tables, accepted by Astrophysical Journa

    Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate

    Get PDF
    Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new compact continuum sources. Three of the new sources are coincident with previously-identified water masers. Together with the previously-known sources, these data bring the number of likely protocluster members to 25 for a protostellar density of ~700 pc^-3. Our preliminary measurement of the Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a uniform volume distribution. All of the (nine) sources with detections at multiple frequencies have SEDs consistent with dust emission, and two (SMA1b and SMA4) also have long wavelength emission consistent with a central hypercompact HII region. Thermal spectral line emission, including CH3CN, is detected in six sources: LTE model fitting of CH3CN(J=12-11) yields temperatures of 72-373K, confirming the presence of multiple hot cores. The fitted LSR velocities range from -3.3 to -7.0 km/s, with an unbiased mean square deviation of 2.05 km/s, implying a dynamical mass of 410+-260 Msun for the protocluster. From analysis of a wide range of hot core molecules, the kinematics of SMA1b are consistent with a rotating, infalling Keplerian disk of diameter 800AU and enclosed mass of 10-30 Msun that is perpendicular (within 1 degree) to the large-scale bipolar outflow axis. A companion to SMA1b at a projected separation of 0.45" (590AU; SMA1d), which shows no evidence of spectral line emission, is also confirmed. Finally, we detect one 218.440GHz and several 229.7588GHz Class-I methanol masers.Comment: 54 pages, 11 figures. Accepted for publication in The Astrophysical Journal. Version 2: Keywords updated, and three "in press" citations updated to journal reference. Version 3: corrected the error in the quantum numbers of the 218 GHz methanol transition in the text and in Table 8. For a PDF version with full-resolution figures, see http://www.cv.nrao.edu/~thunter/papers/ngc6334in2014.pd

    Digging into NGC 6334I(N): Multiwavelength Imaging of a Massive Protostellar Cluster

    Full text link
    We present a high-resolution, multi-wavelength study of the massive protostellar cluster NGC 6334I(N) that combines new spectral line data from the Submillimeter Array (SMA) and VLA with a reanalysis of archival VLA continuum data, 2MASS and Spitzer images. As shown previously, the brightest 1.3 mm source SMA1 contains substructure at subarcsecond resolution, and we report the first detection of SMA1b at 3.6 cm along with a new spatial component at 7 mm (SMA1d). We find SMA1 (aggregate of sources a, b, c, and d) and SMA4 to be comprised of free-free and dust components, while SMA6 shows only dust emission. Our 1.5" resolution 1.3 mm molecular line images reveal substantial hot-core line emission toward SMA1 and to a lesser degree SMA2. We find CH3OH rotation temperatures of 165\pm 9 K and 145\pm 12 K for SMA1 and SMA2, respectively. We estimate a diameter of 1400 AU for the SMA1 hot core emission, encompassing both SMA1b and SMA1d, and speculate that these sources comprise a >800 AU separation binary that may explain the previously-suggested precession of the outflow emanating from the SMA1 region. The LSR velocities of SMA1, SMA2, and SMA4 all differ by 1-2 km/s. Outflow activity from SMA1, SMA2, SMA4, and SMA6 is observed in several molecules including SiO(5--4) and IRAC 4.5 micron emission; 24 micron emission from SMA4 is also detected. Eleven water maser groups are detected, eight of which coincide with SMA1, SMA2, SMA4, and SMA6. We also detect a total of 83 Class I CH3OH 44GHz maser spots which likely result from the combined activity of many outflows. Our observations paint the portrait of multiple young hot cores in a protocluster prior to the stage where its members become visible in the near-infrared.Comment: Accepted to ApJ, 24 pages, a full high resolution version is available at http://www.cv.nrao.edu/~cbrogan/ms.long.pd

    The Protocluster G18.67+0.03: A Test Case for Class I Methanol Masers as Evolutionary Indicators for Massive Star Formation

    Full text link
    We present high angular resolution Submillimeter Array (SMA) and Karl G. Jansky Very Large Array (VLA) observations of the massive protocluster G18.67+0.03. Previously targeted in maser surveys of GLIMPSE Extended Green Objects (EGOs), this cluster contains three Class I methanol maser sources, providing a unique opportunity to test the proposed role of Class I masers as evolutionary indicators for massive star formation. The millimeter observations reveal bipolar molecular outflows, traced by 13CO(2-1) emission, associated with all three Class I maser sources. Two of these sources (including the EGO) are also associated with 6.7 GHz Class II methanol masers; the Class II masers are coincident with millimeter continuum cores that exhibit hot core line emission and drive active outflows, as indicated by the detection of SiO(5-4). In these cases, the Class I masers are coincident with outflow lobes, and appear as clear cases of excitation by active outflows. In contrast, the third Class I source is associated with an ultracompact HII region, and not with Class II masers. The lack of SiO emission suggests the 13CO outflow is a relic, consistent with its longer dynamical timescale. Our data show that massive young stellar objects associated only with Class I masers are not necessarily young, and provide the first unambiguous evidence that Class I masers may be excited by both young (hot core) and older (UC HII) MYSOs within the same protocluster.Comment: Astrophysical Journal Letters, accepted. emulateapj, 7 pages including 4 figures and 1 table. Figures compressed. v2: coauthor affiliation updated, emulateapj versio

    A Search for Infall Evidence in EGOs I: the Northern Sample

    Full text link
    We report the first systematic survey of molecular lines (including HCO+ (1-0) and 12CO, 13CO, C18O (1-0) lines at 3 mm band) towards a new sample of 88 massive young stellar object (MYSO) candidates associated with ongoing outflows (known as extended green objects or EGOs) identified from the Spitzer GLIMPSE survey in the northern hemisphere with the PMO-13.7 m radio telescope. By analyzing the asymmetries of the optically thick line HCO+ for 69 of 72 EGOs with HCO+ detection, we found 29 sources with blue asymmetric profiles and 19 sources with red asymmetric profiles. This results in a blue excess of 0.14, seen as a signature of collapsing cores in the observed EGO sample. The relatively small blue excess measured in our full sample due to that the observed EGOs are mostly dominated by outflows and at an earlier evolutionary phase associated with IRDCs and 6.7 GHz methanol masers. The physical properties of clouds surrounding EGOs derived from CO lines are similar to those of massive clumps wherein the massive star forming cores associated with EGOs possibly embedded. The infall velocities and mass infall rates derived for 20 infall candidates are also consistent with the typical values found in MYSOs. Thus our observations further support the speculation of Cyganowski et al. (2008) that EGOs trace a population with ongoing outflow activity and active rapid accretion stage of massive protostellar evolution from a statistical view, although there maybe have limitations due to single-pointing survey with a large beam.Comment: 44 pages, 4 figures, accepted for publication in Ap

    VLA observations of water masers towards 6.7 GHz methanol maser sources

    Full text link
    22 GHz water and 6.7 GHz methanol masers are usually thought as signposts of early stages of high-mass star formation but little is known about their associations and the physical environments they occur in. The aim was to obtain accurate positions and morphologies of the water maser emission and relate them to the methanol maser emission recently mapped with Very Long Baseline Interferometry. A sample of 31 methanol maser sources was searched for 22 GHz water masers using the VLA and observed in the 6.7 GHz methanol maser line with the 32 m Torun dish simultaneously. Water maser clusters were detected towards 27 sites finding 15 new sources. The detection rate of water maser emission associated with methanol sources was as high as 71%. In a large number of objects (18/21) the structure of water maser is well aligned with that of the extended emission at 4.5 μ\mum confirming the origin of water emission from outflows. The sources with methanol emission with ring-like morphologies, which likely trace a circumstellar disk/torus, either do not show associated water masers or the distribution of water maser spots is orthogonal to the major axis of the ring. The two maser species are generally powered by the same high-mass young stellar object but probe different parts of its environment. The morphology of water and methanol maser emission in a minority of sources is consistent with a scenario that 6.7 GHz methanol masers trace a disc/torus around a protostar while the associated 22 GHz water masers arise in outflows. The majority of sources in which methanol maser emission is associated with the water maser appears to trace outflows. The two types of associations might be related to different evolutionary phases.Comment: accepted by Astronomy & Astrophysic

    Understanding Accretion Outbursts in Massive Protostars through Maser Imaging

    Full text link
    The bright maser emission produced by several molecular species at centimeter to long millimeter wavelengths provides an essential tool for understanding the process of massive star formation. Unimpeded by the high dust optical depths that affect shorter wavelength observations, the high brightness temperature of these emission lines offers a way to resolve accretion and outflow motions down to scales below \sim1 au in deeply embedded Galactic star-forming regions at kiloparsec distances. The recent identification of extraordinary accretion outbursts in two high-mass protostars, both of which were heralded by maser flares, has rapidly impacted the traditional view of massive protostellar evolution, leading to new hydrodynamic simulations that can produce such episodic outbursts. In order to understand how these massive protostars evolve in response to such events, larger, more sensitive ground-based centimeter wavelength interferometers are needed that can simultaneously image multiple maser species in the molecular gas along with faint continuum from the central ionized gas. Fiducial observations of a large sample of massive protostars will be essential in order to pinpoint the progenitors of future accretion outbursts, and to quantify the outburst-induced changes in their protostellar photospheres and outflow and accretion structures. Knowledge gained from these studies will have broader impact on the general topic of accretion onto massive objects.Comment: Science white paper submitted to the Astro2020 Decadal Survey. arXiv admin note: substantial text overlap with arXiv:1806.0698
    corecore