View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

MAPLE for Stochastic Differential Equations*'

Sasha Cyganowski

School of Computing and Mathematics
Deakin University, Geelong 3217, Australia
e-mail: sash@deakin.edu.au

Peter E. Kloeden and Thomas Pohl

Fachbereich Mathematik, Johann Wolfgang Goethe Universitat
D-60054 Frankfurt am Main, Germany
e-mail: kloeden@math.uni-frankfurt.de

*The main part of this report was written while P.E. Kloeden was the Deputy Leader of the
Stochastic Algorithms and Nonparametric Statistics Research Group at the Weierstrass Institute.

11991 Mathematics Subject Classification Primary: 60H10, 60H30, 68Q40 Secondary: 65HO05,
93E15, 93E30

https://core.ac.uk/display/289297646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction
1.1 MAPLE
1.2 Stochastic Differential Equations . . .

2 Explicitly Solvable Scalar SDE
2.1 Linearsde routine
2.2 Reducible routine
2.3 Explicit routine

3 1Ito Stochastic Calculus
3.1 LJ Operator routine
3.2 LO Operator routine

3.3 LFP Operator: Fokker-Planck Equation
3.4 Application of the partial differential operators

3.5 The Ito Formula
3.6 Coloured Noise

4 Stratonovich Stochastic Caculus
4.1 Tto—Stratonovich correction

4.2 TIto—Stratonovich correction: both directions

4.3 Stratonovich L0 operator
4.4 Stratonovich transformation formula .

5 Linear Vector SDEs
5.1 Linearization
5.2 Second moment equation
5.3 Spherical coordinates

6 Strong Numerical Schemes
6.1 FEuler scheme
6.2 Milstein scheme

6.3 Order 1.5 strong stochastic Taylor scheme

6.4 2nd order stochastic Taylor scheme . .

7 Commutative Noise
7.1 Commutative noise of 1st kind
7.2 Commutative noise of 2nd kind

8 Weak Numerical Schemes
8.1 Weak Euler scheme
8.2 Second order weak Taylor scheme . . .
8.3 Order 3 weak Taylor scheme

9 APPENDIX
9.1 Subprocedures for momenteqn
9.2 The inverse procedure pvector2pmatrix

References

[0 BN~ RTSNETN w N N

o ©

10
12
14
15
16

18
18
19
20
22

23
23
24
27

29
30
31
33
35

37
38
39

41
41
43
45

47
47
49

50

1 Introduction

1.1 MAPLE

This report provides an introduction and description of the MAPLE software pack-
age with(stochastic) which consists of MAPLE routines for stochastic calculus

and stochastic differential equations. These are known to work for MapleV version 5
(for Windows) and MapleV version 5 (for Unix). Its CALLING SEQUENCE is

<function>(args) stochastic[<function>|(args)

It was originally developed by Sasha Cyganowski of Deakin University, Australia,
initially as a Mathematics Honours project under the supervision of Professor P.E.
Kloeden and then further extended and developed, partly with the assistance of
Dr. Thomas Pohl. Comments via e-mail are welcome and can be sent to Sasha
Cyganowski at sash@deakin.edu.au or to Peter Kloeden at kloeden@math.uni-
frankfurt.de. A copy of the software can be obtained by email from either of these
addresses.

The stochastic package contains routines useful for finding explicit solutions of
Stochastic Differential Equations(SDEs), and routines useful for constructing numer-
ical schemes up to strong order 2.0 and weak order 3.0. Other features include a
routine which converts SDEs with white noise into coloured noise form, and routines
which check whether an SDE has commutative noise of the first and/or second kind.
Some other useful routines are also available, in particular for the operators proce-
dures L0 and LJ are included so that users can easily construct numerical schemes
other than those already available. For more information on a particular function
type the command <function>.

The general schemes, solutions and conditions used in the coding of the stochastic
package can be found in

Kloeden, P.E, Platen, E.: Numerical Solution of Stochastic Differential Equations,
(Springer-Verlag, 1992, Second Edition, 1994).

To use a stochastic function, either define that function alone using the com-
mand with(stochastic, <function>), or define all stochastic functions using the
command with(stochastic). Alternatively, invoke the function using the long form
stochastic[<function>]. This long form notation is necessary whenever there is
a conflict between a package function name and another function used in the same
session.

The functions available are:

linearsde MLJ explicit LO Euler
Milstein Taylorihlf SLO correct Taylor2

wkeuler wktay?2 reducible wktay3 colour
comml comm?2 LJ momenteqn sphere
pmatrix2pvector pvector2pmatrix ap pa bpb

As an example, to find the explicit solution of an SDE with drift coefficient 1/2a%z
and diffusion coefficient ax use

>with(stochastic,explicit); explicit}}(1/2*a"2*x,a*x);

Note the stochastic numerical routines require the drift and diffusion coefficients of
an SDE to be entered in the variables z[N] and ¢, where z[N] are the state variables
of the N-dimensional SDE and ¢ denotes time. The routines linearsde, reducible,
and explicit require the drift and diffusion coeflicients to be entered in the variables
z and .

1.2 Stochastic Differential Equations
We consider a the N-dimensional [to SDE with an M-dimensional Wiener process
M . .
dX; = a(t,Xy)dt + >V (t, X;) dW} (1.1)
j=1
and its Stratonovich counterpart
M . .
dX; = a(t, Xy) dt + >V (t, Xy) o dW/ (1.2)
j=1

where @ is defined componentwise by

) 1 N M 8bzk
ad(t, X)=a'(t, X) — =Y > VFt, X) —(¢, X)
2]:1k:1 Ox;

fori =1,..., N.

In many of the MAPLE procedures that follow we will use the parameters al,.. .,
aN to denote the drift coefficients and [b11,...,b1M],..., [bN1,...,bNM] to denote
the diffusion coefficients.

NOTE: The indexing on the the b/J here is the transpose of the usual matrix
indexing; here the first index I corresponds to the column and the second J to the
row due to the fact that b* is the jth component of the diffusion coefficient vector
b’ associated with the jth component W} of the Wiener process.

2 Explicitly Solvable Scalar SDE

In this Section we consider general scalar SDE
dX; = a(t, X;) dt + b(t, X;) dW; (2.1)

that can be solved explicitly. First we look at the general linear scalar SDE

dX; = (a1(t) Xt + az(t)) dt + (b (¢) X + b2(t)) dW; (2.2)
for which an explicit solution is always available. Then we consider nonlinear scalar
SDE that can be reduced to linear scalar SDE and hence solved explicitly.
2.1 Linearsde routine
The general form of a scalar linear stochastic differential equation is

dX; = (a1(t) Xy + az(t)) dt + (b (¢) X + b2(t)) dW; (2.3)

where the coefficients ai, as, by, by are specified functions of time ¢ or constants.
When b;(t) = 0 in (2.1) the SDE is the additive noise and when b;(¢) # 0 it has
multiplicative noise.

In the general case the SDE can be solved with the integrating factor

By = exp (/tt (al(s) - %bf(s)) ds+ [bi(s) dWs> | (2.4)

to

and has the eplicit solution
t t
X, = b, (Xto n /t (02(5) ~ ba()ba(s)) @4, ds + [ba(s)7, dWs> . (2.5)
0 0
In the additive noise case, the SDE reduces to

dX, = (a1(t) X, + az(t)) dt + by(t) dW,, (2.6)

and the integrating factor to
t
q)t,to = exp (/ a,l(S) dS))
to

in which case the explicit solution is

t t
X, = &y, (Xto + [ax(s)0;L ds+ [by(s)®; L dWS) . (2.7)
to to

The routine stochastic[linearsde| returns the explicit solution of an SDE (2.1)
with linear drift coefficient a(t,) = a(t)z or a(t) and linear diffusion coefficient b(¢, z)
= B(t)z or B(¢). Its CALLING SEQUENCE is

linearsde(a,b):

with PARAMETERS

a -- algebraic, given in the variables x and t
b -- algebraic, given in the variables x and t

representing the drift and diffusion coefficients of the SDE, the particular cases of
which are identified by the routine. A suitable error message is returned if the coef-
ficients of a nonlinear SDE are used.

stochastic[linearsde] :=proc(a::algebraic,b::algebraic)
local templ,alpha,beta,gamma,delta,fundsoln,fundsoln2,soln,
defaultl,default2,default3;
if diff(a,x,x) <> 0 or diff(b,x,x) <> 0 then
ERROR(‘SDE not linear, try a reducible procedure®)
else
alpha := diff(a,x);
alpha := subs(t = s,alpha);
beta := diff(b,x);
beta := subs(t = s,beta);
if diff(beta,s) = O then templ := beta*W;
else templ:=Int(beta,W = 0 .. t);

fi;
gamma := coeff(a,x,0);
gamma := subs(t = s,gamma);

delta := coeff(b,x,0);
delta := subs(t = s,delta);
fundsoln := exp(int(alpha-1/2*beta”2,s = 0 .. t)+templ);
fundsoln?2 := subs(t = s,fundsoln);
if beta = 0 then
soln := fundsoln*(X[0]+int(1/fundsoln2*(gamma-beta*delta),
s =0 .. t)+Int(1/fundsoln2*delta,W = 0 .. t))
else soln := fundsoln*(X[0]+Int(1/fundsoln2*(gamma-beta*delta),
s =0 .. t)+Int(1/fundsoln2*delta,W = 0 .. t))

fi;
defaultl := Int(0,W =0 .. t) = 0;
default2 := Int(O,W =0 .. s) = 0;
default3 := Int(0,s =0 .. t) = 0;
soln := X[t] = subs(defaultl,default2,default3,soln);
fi;
end:

The call linearsde(a,b); returns the explicit solution for a linear SDE (2.3) with
drift coefficient a and diffusion coefficient b. The output consists of the variables
X|t], X[0] and W, where X[t] denotes the explicit solution, X[0] the initial value of
the solution, W a standard Wiener process, and ¢ time.

The routine is used by the routine stochastic[explicit] and, in general, is not in-
tended to be used on its own. It is part of the stochastic package and is usually
loaded via the call with(stochastic), but can also be invoked via the call stochas-

tic[linearsde].

EXAMPLE:Consider the scalar linear SDE with aditive noise
dX; = —X; dt + 2dW;

with drift a(¢, z) = —z and diffusion coefficient b(¢, z) = 2

>linearsde(-x,2);

i 9
X, = ¢ (Xo + / dW)
0 e(~9)

SEE ALSO: stochastic, stochastic[reducible], stochastic[explicit].

2.2 Reducible routine

A nonlinear scalar SDE

dX; = a(Xy) dt + b(X;) dW; (2.8)
can be reduced to a linear scalar stochastic differential
ay; = dW; (2.9)
by a substitution
y=hiz) = [35 (2.10)

b(s)’

X, = h™ (W, + h(Xy)),
provided the drift has the form

giving the solution

1

a(z) = 3 b(z)b'(z).

Here z = h™!(y) is the inverse function of the function y = h(z).
More generally, if the drift has the form

1
a(z) = ab(z)h(z) + 2 b(z)b'(x)
then the SDE can be reduced to the Langevin equation

dY; = oY, dt + BdW,

giving the solution
t
X, = h (e"‘th(Xo) et [Tee dWs) .
0
The routine stochastic[reducible] returns the explicit solution of a reducible
SDE 2.8. Its CALLING SEQUENCE is
reducible(a,b);

with PARAMETERS

a - algebraic, given in the variables x and t.
b - algebraic, given in the variables x and t.

representing the drift and diffusion coefficient of the SDE (which actually should not
depend explicitly on the ¢ variable here). If the SDE is not of the above reducible
form, then a suitable error message is returned.

stochastic[reducible] :=proc(a::algebraic,b: :algebraic)
local beta,templ,h,temp3,alpha,soln,solnl;
h := int(1/b,x);
templ := alpha*b*h+1/2*b*simplify(diff(b,x));
templ = a;
alpha := simplify(solve(",alpha));
beta := alpha*h;
if diff(alpha,x) = O then
if alpha=0 then
soln:=h=subs(x=X[0] ,h)+W;
X[t]=simplify(solve(soln,x));
else
solnl := h = exp(alpha*t)*subs(
x = X[0],h)+exp(alpha*t)*Int(exp(-alpha
*s),W =0 .. t);
X[t] = solve(solnl,x);
fi
elif diff(beta,x) = 0 then
X[t]l=simplify(solve(h = beta*t+W+subs(x
else ERROR(‘non-linear SDE not reducible‘)
fi
end:

X[0],h),x));

The call reducible(a,b); returns the explicit solution for a reducible SDE with drift
a and diffusion coefficient b. The output consists of the variables X[t], X[0] and W.
where X[t] denotes the explicit solution, X[0] the initial value of the solution, W a
standard Wiener process and t time.

This routine is used by the routine stochastic[explicit] and, in general, is not in-
tended to be used on its own. It is part of the stochastic package and is usually
loaded via the call with(stochastic), but can also be called via the call stochas-
tic[reducible].

EXAMPLE: Consider the scalar nonlinear SDE
>reducible(1,2*sqrt(x));

1/2 2
X[t] = 2 X[0] W o+ W o+ X[0]

This SDE is reducible and the required solution is

Xy = Xo 4 2y Xo W, + (W)

SEE ALSO: stochastic, stochastic[linearsde], stochastic[explicit]

2.3 Explicit routine

The routine stochastic[explicit] applies the routines stochastic[linearsde| and
stochastic[reducible] to a general scalar SDE and returns the explicit solution if
the SDE is either linear or reducible as in the preceeding subsections. Its CALLING
SEQUENCE is

explicit(a,b);

with PARAMETERS

a - algebraic, given in the variables x and t
b - algebraic, given in the variables x and t

representing the drift and the diffusion coefficient of the SDE. A suitable error message
is returned if the SDE is not linear or reducibale to a linear SDE.

stochastic[explicit] := proc(a::algebraic,b::algebraic)
if diff(a,x,x) = 0 and diff(b,x,x) = 0

then linearsde (a,b) else reducible(a,b)

fi

end:

The call explicit(a,b); returns the explicit solution for a scalar SDE with drift co-
efficient a and diffusion coefficient b of the appropriate form. The output consists of
the variables X[t], X[0] and W, where X|[t] denotes the explicit solution, X[0] the
initial value, W denotes a standard Wiener process, and ¢ time. The user is returned
with a suitable error message if no known explicit solution exists.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked via the call stochastic[explicit].

EXAMPLE: Consider the scalar SDE
1
dXt = §a2Xt dt + aXt th,

with drift a(z) = Jaz and diffusion coefficient b(z) = az, where a is a constant.

>explicit (1/2*a"2*x,a*x) ;

X[t]=exp(aW)X[0]

This SDE is linear and thus explicitly solvable with the solution

X, = XyeMt.

SEE ALSO: stochastic, stochastic[linearsde], stochastic[reducible]

3 Ito Stochastic Calculus

We now consider a general N-dimensional Ito SDE
M . .
dX; = a(t, Xy)dt + > (¢, Xy) dW} (3.1)
j=1

with an M-dimensional Wiener process Wy = (W}, ---, WM). The operators L° and
L67 with respect to this SDE which are defined by

0 8 N . 8 1 N M fi L 82
L'=_— + 4= bripha 3.2
ot ,Z{“ oz* 2,}%}2 e (3.2)
and
N H
LJ:Zb’”W, j=1,....M (3.3)
k=1

play a fundamental role in stochastic calculus through the Ito formula, stochastic
Taylor expansions and numerical schemes for the SDE that are based on stochastic
Taylor expansions.

3.1 LJ Operator routine
The routine stochastic[LJ] applies the partial differential operator L/ defined by
3.3. Its CALLING SEQUENCE

LI(X,[[b11,..,b1M], ..., [bN1,...bNM]l,j);

has PARAMETERS

X - algebraic, given in the variables x[N] and t,
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
x[N] and t,
j - integer,

where the b1 .J are the components of the diffusion coefficient vectors of the SDE (3.1).

stochastic[LJ] := proc(X::algebraic,b::1ist(list(algebraic)),j::integer)
sum(’op(j,op(k,b))*diff (X,x[k])’,’k’ = 1 .. nops(b))
end:

The call LIJ(X,[[b11,..,b1M],..,[bN1,..,bNM]],j);] applies the partial differential
operator L7 to the function X, where [b11,...,b1M], ..., [bN1,...,bNM] denotes
the components of the M N-dimensional diffusion coefficient vectors, where M is the
dimension of the Wiener process and N is the dimension of the SDE (3.1), and j = 1,
..., M denotes the “current” component of the Wiener process. The output variables
are consistent with the variables used as input.

This routine is used by the routines

stochastic[Euler]|, stochastic[Milstein], stochastic[Taylor1.5],
stochastic[Taylor2], stochastic[wkeuler]|, stochastic[wktay2],
stochastic[itoformula], stochastic[MLJ].

In general, it is not intended for use on its own, but is part of the stochastic package
and is usually loaded via the call with(stochastic). It can also be invoked via the
call stochastic[LJ]

EXAMPLE: Consider the function X (¢, 21, z3) = 2 and a 2—dimensional SDE driven
by a 2—dimensional Wiener process with diffusion coefficient vectors

bl’l r b2,1 0
bl = = b2 == -
where 7 is a constant.
>LJ(x[2],[[r,0],[0,r]],2);
r
>LJ(x[2],[[r,0],[0,r]1],1);

0

This has evaluated L2X (t,z1,72) = r and L' X (¢,21,22) = 0

SEE ALSO:

stochastic[L0], stochastic|[MLJ], stochastic[SLO]|, stochastic[Euler],
stochastic[Milstein], stochastic[Taylor1hlf], stochastic[Taylor2],
stochastic[wkeuler], stochastic[wktay2], stochastic.

3.2 LO Operator routine

The routine stochastic[LO] applies the partial differential operator L° to the func-
tion X. Its CALLING SEQUENCE

LO(X,[al,..,aN], [[b11,..,b1M],.., [bN1,..,bNM]]);

has PARAMETERS

10

X - algebraic, given in the variables x[N] and t,
al,..,aN - algebraics, given in the variables x[N] and t,
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
x[N] and t,

where al,...,aN denotes the drift coefficients of the N—dimensional SDE (3.1), while
(b11,...,b1M], ..., [bN1,...,bNM] denote the components of the corresponding M
N—dimensional diffusion coefficient vectors.

stochastic[LO] :=proc(X::algebraic,a::list(algebraic),
b::1list(1list(algebraic)))
local partl,part2,part3;
partl := diff(X,t);
part2 := sum(’alk]*diff(X,x[k])’,’k’ = 1 .. nops(a));
part3 := 1/2%sum(
’sum(’sum(’op (j,op(k,b))*op(j,op(1l,b)) *diff (X,x[k],x[1])’,
37 =1 .. nops(op(1,b)))?,’k?> =1 .. nops(a))?,’l” =1 .. nops(a)
)
partl+part2+part3;
end:

The call LO(X,[al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); applies the partial dif-
ferential operator L’ to the function X. It is used by the routines

stochastic[Euler],stochastic[Milstein], stochastic[Taylorl.5],
stochastic[wkeuler], stochastic[wktay2],stochastic[itoformula],
stochastic[LFP], stochastic[MLJ].

In general, it is not intended for use on its own. The routine is part of the stochastic
package and is usually loaded via the call with(stochastic) and can also be invoked
via the call stochastic[LO] .

EXAMPLE: Consider the 2—dimensional SDE driven by a 2—-dimensional Wiener pro-

cess given by
X} X} r L 0)
d , | = , | dt+ aw, + awy;,
X; X; 0 r

where r is a constant, that is with drift with components a' = z1, a
constant diffusion coefficient vectors

(b r . [0
b= pl:2 - 0 ! b = p2:2 - r ’

Apply the corresponding operator L to the function X (¢,z;,z2) = z».
>LO(x[2], [x[1],x[2]1], [[r,0],[0,r]]);

2 = z, and the

x[2]

The result is L°X (¢, z1, T2) = T.

11

3.3 LFP Operator: Fokker—Planck Equation

The transition probabilities of the Ito stochastic differential equation (3.1) have den-
sities p(s, z; t,y) which satisfy the Fokker-Planck equation,

Op

N oy o
" 12::1 o {a'(t,y)p} 3 Z Z::

: oLy Yy =0 (34)

(s,z in p fixed) with the initial condition

ltiglp(s, z;t,y) = 6(z — y),

where § is the Dirac delta function on R
We define the corresponding differential operator £* as , which is in fact the adjoint
of the £ or L° operator above as

ip— gi#iai{ w1y Yy

1,7=1 k=1 8yzay]

{b”“ (t, y)b* (¢, y)p} .
In MAPLE it will be called the LF' P operator.

The CALLING SEQUENCE
LFP(P,[al,..,aN], [[b11,..,b1M],.., [bN1,..,bNM]]);

has PARAMETERS

P - algebraic, given in the variables y[N] and t,
al,..,alN - algebraics, given in the variables y[N] and t,
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
y[N] and t,

where al, ..., aN denotes the drift coefficients of the N—dimensional SDE (3.1), while
(b11,...,b1M], ..., [bN1,...,bNM] denote the components of the corresponding M
N-dimensional diffusion coefficient vectors. The procedure has following code:

LFP:=proc(P::algebraic,a::1list(algebraic),b::1ist(list(algebraic)))
local partl,part2,part3;

partl := diff(P,t);
part2 := sum(’diff(alk]*P,y[k])’,’k’” = 1 .. nops(a));
part3 := 1/2*sum(

>sum(’sum(’diff (op(j,op(k,b))*op(j,op(1l,b))*P,y[k],y[1])’,
,J., =1 .. nops(op(l,b)))’,’k’ =1 .. nops(a))’,’l’ =1 .. nops(a)
)3
partl+part2-part3;
end:

12

EXAMPLE: Consider the Ito equation
dXt =adt + deta

where a and b are constant. If we want obtain the equation (3.4) for this Ito-equation
we call

> LFP(p(s,x,t,y[1], [al, [[b1]1);

and obtain
0 0 1 0?
— t — t — —b? (— t = 0.
(g6 %t 70) + 2.6, %, 10) = 56 (5006, % 1)
If we have a density function
1 —(y—z—a*(t—s))z)
p(s,z,t,y) = ———e 2%t

272 (t — s)

and want know, if p(s, z,t, y) satisfy the Fokker—Planck equation, we call:
> LFP(p(s,x,t,y[1]1),[al, [[bl]);.

The output of LFP is:

%1 a 1 %17
V2 %2 7 b? lﬂ(bQ(t—s)—FEb?(t—s)

1
A(wE (L) 2 Jrb)

1 av2 %1 %2

2 \fab? (t = 5)b (¢~ 5)
1 V2 %2 1 V2 %1° %2

4 [rb(t—s)(t—s) 4\ rb2(t—s)(t—s)28
%1:=y; —x—a(t—s)

%2 = el ? %).

) %2

After the MAPLE command
simplify (%) ;

we obtain 0. Hence p(s, z,t, y) satisfies the Fokker—Planck equation.

13

3.4 Application of the partial differential operators

The routine stochastic[MLJ] applies one of the partial differential operators, L0 or
LJ to the mapping X. Tts CALLING SEQUENCE is

MLJ(X,[al,..,aN],[[b11,..,b1M],..,[bN1,...bNM]],j);

with PARAMETERS

X - algebraic, given in the variables x[N] and t.
al,..,aN - algebraics, given in the variables x[N] and t.
[b11,..,biM],.., [bN1,..,bNM]

lists of algebraics, given in
variables x[N] and t.
j — integer.

where al, ..., aN denotes the drift coefficients of the N—dimensional SDE (3.1), while
the [b11,...,b1M], ..., [bN1,...,bNM] denote the corresponding M N-dimensional
diffusion coefficient vectors of the SDE (3.1).

stochastic[MLJ]:=
proc(X::algebraic,a::list(algebraic),b::1ist(list(algebraic)),j::integer)
local flag;

flag := 0;

if j = 0 then flag := LO(X,a,b) fi;

if flag = 0 then flag := sum(’op(j,op(k,b))*diff(X,x[k])’,

’k> =1 .. nops(b)) fi;

RETURN (flag)
end:

The call MLJ(X,[al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]],j); computes the ap-
plication of either the operator LJ or the operator L0 to the function X. Here al,
..., aN are the drift coefficients of the N—dimensional SDE and [b11,...,b1M], ...,
[bN1,...,bNM] are the M N-dimensional diffusion coefficient vectors, where M is
the dimension of the Wiener process, while j = 1,..,M refers to the ‘current’ compo-
nent of the Wiener process. The output variables are consistent with the variables
used as input.

This routine is used by the routine stochastic[wktay3] and in general, is not in-
tended for use on its own. It is part of the stochastic package and is usually loaded
via the call with(stochastic), but can also be invoked directly via the call stochas-
tic[MLJ].

EXAMPLES: Consider the 2-dimensional SDE driven by a 2-dimensional Wiener
process given by

X} X2 r L 0)
d = dt + aw, + awy,
X? X} 0 r

14

where 7 and s are constants, that is with drift with components a' = 25, a®> = z; and
the constant diffusion coefficient vectors

. b1 r) b1 s
b = pl:2 - s |’ b = p2:2 - r |

Apply the corresponding operators L? and L° to the function X (¢,z1,73) = x>

>MLJ(x[2], [x[2]1,x[111,[[r,s],[s,r]],2);
r
>MLJ(x[2], [x[2],x[1]1],[[r,s],[s,r]],0);

x[1]

The result is L2X (¢, z1,x2) = r and L°X (¢, 71, T3) = 1.

SEE ALSO: stochastic, stochastic[L0], stochastic[LJ], stochastic[SLO],
stochastic[wktay3].

3.5 The Ito Formula

For a sufficiently smooth transformation U : [0, T]|xRY — R of the solution X; of the
Ito SDE

M
dX, = a(t, X;)dt + > b/ (t, X;) dWY

i=1

the scalar process Y; = U(t, X;) satissfies the a vector stochastic differential

ou X oU 1 Moo BT
day, = [— i — polpit —— | dt 3.5
t (8t Pl 21.;1; axiaxj) (3:5)
M N) D
_I_ZZbZ’laL thl
=1 i=1 Oz;

where the terms are all evaluated at (¢, X;). This is called the Ito Formula.
In operator form it is

M .
dY, = L'U(t, X)t)dt + > L'U(t, X;) dWY.

j=1

itoformula:=proc(U::1list(algebraic),a::1list(algebraic),
b::list(list(algebraic)))
local i,k,10,1j,s0ln;
for i from 1 to nops(U) do
10:=LO0(U[i],a,b)*dt;
1j:=0;

15

for k from 1 to nops(b) do
13:=13+LI(ULi],b,k) *dW.1;

od;
soln[i]:=dX.i=10 +1j;
od;
RETURN (eval(soln));
end:

EXAMPLE: Consider the function Y; = U(t, X;) = X? where X; is a solution of the
Ito SDE
dXt = aXt dt + bXt th

Then we have:

> itoformula([(x[1]1)~2]1,[al,[[bl1]);

table([
2
1 = (dX1 = (2 ax[1] +b) dt + 2 b x[1] dwl)

D,
that is
dY; = (2aY; + b°) dt + 2bY; dW,.

3.6 Coloured Noise

We convert the N-dimensional Ito SDE (3.1) with a single white noise (i.e. m = 1)
into its counterpart with coloured noise, that is driven by an Ornstein—Uhlenbeck or
exponentially correlated coloured noise process. The resulting coloured noise equation
is the (N + 1)-dimensional Ito SDE with scalar additive noise

dX: = (a(t, Xy) +0b(t, X;) Zy) dt (3.6)

The routine stochastic[colour] converts the SDE 3.1 with scalar white noise into its
coloured noise counterpart (3.6)-(3.7). Its CALLING SEQUENCE is

colour([al,..,aN],[b1,..,bN]);

with PARAMETERS

al,..,aN - algebraics, given in the variables x[N] and t.
bl,..,bN - algebraics, given in the variables x[N] and t.

where al, ..., alN denotes the drift coefficients and b1, ..., bN the diffusion coefficients
of N-dimensional SDE with scalar noise.

16

stochastic[colour] :=proc(a::1list(algebraic),b::1ist(algebraic))

local templ,i;
for i to nops(a) do templ[i] := dx[i][t] = al[i]l*dt+b[i]*z[t]*dt od;
templ[i] := dz[t] = -gamma*z[t]*dt+beta*dW[t];
RETURN (eval (templ))

end:

The call colour([al,..,aN],[bl,..,bN]); converts N-dimensional SDE (3.1) with
scalar white noise into its coloured noise form (3.6)-(3.7). The output consists of the
variables z, z[N|, W, gamma, beta and ¢. Here z denotes the Ornstein—Uhlenbeck
process, (z[N], z) the state variable of the (N + 1)-dimensional SDE (3.6)-(3.7) and
W a standard Wiener process, while gamma and beta denote parameters, usually
provided from experimental data, and ¢ denotes time.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[colour].

EXAMPLE: Find the coloured noise counterpart of the 2-dimensional SDE with
scalar noise

dX! = X2dt, dX!= (th (a - (th)2> - Xf) dt + o dW;.
>colour([a(x[1],t)], [b(x[1],t)]);

table([

[EY
I

(dx[11[t] = a(x[1], t) dt + b(x[1], t) z[t] dt)

N
]

(dz[t] = - gamma z[t] dt + beta dW[t])
D

>colour([x[2],x[1]1*(alpha-x[1]~2)-x[2]1], [0,sigma*x[1]1]);

table ([
1 = (ax[11[t] = x[2] dt)
2
2 = (dx[2][t] = (x[1] (alpha - x[1]) - x[2]) dt + sigma x[1] z[t] dt)
3 = (dz[t] = - gamma z[t] dt + beta dW[t])
D
The resulting coloured noise system is
dX} = XZ2dt

dx; = (th (a - (th)2> X2y aZt> di
dz, = —vyZydt+ BdW;
SEE ALSO: stochastic

17

4 Stratonovich Stochastic Caculus

We consider a the N-dimensional Ito SDE with an M-dimensional Wiener process
M . .
dX; = a(t,Xy)dt + >V (t, X;) dW} (4.1)
j=1
and its Stratonovich counterpart
M . .
j=1
Here g given a is defined componentwise by

abz k

a'(t,X) =a'(t,X) — ZZb”“tX ——(t, X)
] 1k=1 (9
fori =1, ..., N, while a given a is defined componentwise by
1 N abzk
a'(t, X) = 5 Z Z (t, X)

J

fori=1,..., N.

4.1 Ito—Stratonovich correction

Here we introduce a procedure which applies the drift-correction formula to convert
the Ito drift coefficient a into the corresponding Stratonovich drift coefficient a. This
is the routine stochastic[correct] which has CALLING SEQUENCE:

correct([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]],i);

with PARAMETERS

al,..,alN - algebraics, given in the variables x[N] and t.
bii,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
x[N] and t.
i - integer.

where al,...,aN denote the drift coefficients of the N-dimensional SDE (4.2) and
(b11,...,b1M], ..., [bN1,...,bNM] denote the components of the corresponding M
N—dimensional diffusion coeflicient vectors, M being the dimension of the Wiener
process W. The index ¢ = 1, ..., N denotes the ‘current’ component of the SDE. The
output variables are consistent with the variables used as input.

stochastic[correct] :=proc(a::1list(algebraic),b::list(list(algebraic)),i) ali]-
1/2xsum(’LJI(op(j,op(i,b)),b,j)?,?j’ =1 .. nops(op(1,b)));
end:

18

The call correct([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]],i); converts the drift
coefficient of the Ito SDE (4.1) into that of its Stratonovich form (4.2).

This routine is used by the routine stochastic[Taylor2]. It is part of the stochastic
package and is usually loaded via the call with(stochastic), but can also be invoked
via the call stochastic[correct].

EXAMPLES: Both examples have N = M = 2 with the same Ito drift vector
a’l(taxlaxZ) = T, a’z(taxlaxZ) = T2,
and the constant diffusion coefficient vectors
1,1 2,1
b b | p b B 0
S\) o)’ S\))
where r is a constant, in the first case and the variable diffusion coefficient vectors
1,1 2,1
bl _ b _ 1 b2 . b _ 0
S\) Lo)] S\))

in the second case.

>correct ([x[1],x[2]], [[r,0],[0,r]],2);
x[2]

>correct ([x[1],x[2]], [[x[1],0],[0,r]],1);
1/2 x[1]

The application of the routine here produces the result a'(¢,z1,x2) = > in the first
case and a*(t,x, T3) = %xl in the second case.

SEE ALSO: stochastic, stochastic[Taylor2]

4.2 Ito—Stratonovich correction: both directions

The next procedure combines the Ito to Stratonovich conversion with the Stratonovich
to Ito conversion procedure of the last subsection.

conv:=proc(a::list(algebraic),b::1list(list(algebraic)),c::algebraic)
local temp,i;
if c=ito then
for i from 1 to nops(a) do temp[i]:=op(i,a)-1/2*sum(’sum(’op(k,op(j,b))
*diff (op(k,op(i,b)),x[j1)’,’k’=1. .nops(op(1,b)))?,?j’=1. .nops(a));
od;

19

elif c=strat then
for i from 1 to nops(a) do
temp[i] :=op(i,a)+1/2*sum(’sum(’op(k,op(j,b))
*diff (op(k,op(i,b)),x[j1)’,’k’=1. .nops(op(1,b)))?,’j’=1. .nops(a));

od;
else

ERROR(‘Must enter either ito or strat for the 3rd argument‘)
fi;
RETURN (map (simplify,eval(temp)))
end:

EXAMPLE: Consider the Ito SDE

dX, = —a*X;(1 — X2)dt +a(1 — X2) dW,
To obtain the Stratonovich SDE use
> conv([-a~2*x[1] (1-x[1]1"2)], [[a*(1-x[1]1"2)]1],ito);

and obtain

table(]
1=

])’

which means that the desired Stratonovich SDE is

dX; = 0dt —a(l — X2)odW,
—a(l — th) o th

The other direction gives the original Ito SDE back.

> conv([0], [[a*(1-x[1]1"2)]1],strat);

table(]
1= 02 1 (—1 + 1'12)

D)

4.3 Stratonovich LO operator

The L° operator of of Ito calculus needs to be changed in Stratonovich calculus to

o X 0
L0 = — k_—_ 4.3
- 8t+gg oz*’ ()

20

while the L’/ operator of of Ito calculus remains unchanged in Stratonovich calculus.
The Stratonovich operator L° applied to a function X is produced by the routine
stochastic[SLO] with CALLING SEQUENCE:

SLO(X,[al,..,aN],[[b11,..,b1M],..,[bN1,..,.bNM]]);

which has PARAMETERS:

X - algebraic, given in the variables x[N] and t.
al,..,alN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
x[N] and t.

where al,...,aN denote the drift coefficients of the N-dimensional SDE (4.2) and
b11,...,b1M], ..., [bN1,...,bNM] denote the components of the corresponding M
N-dimensional diffusion coefficient vectors, M being the dimension of the Wiener
process W. The output variables are consistent with the variables used as input.

stochastic[SLO] :=proc(X::algebraic,a::list(algebraic),b::1ist(list(algebraic)))
local partl,part2;
partl := diff(X,t); part2 := sum(’alk]*diff(X,x[k])’,’k’> = 1 .. nops(a));
partl+part2;
end:

The call SLO(X,[al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); computes the appli-
cation of the Stratonovich version of the operator L0 to X.

This routine is used by the routine stochastic[Taylor2]. In general, it is not intended
for use on its own. It is part of the stochastic package and is usually loaded via the
call with(stochastic), but can also be invoked directly via the call stochastic[SLO].

EXAMPLE: L°X is computed for the function X (¢, 21, z3) = , and the 2-dimensional
Stratonovich SDE with drift components

a'(t,z1, 2) = a1, a’(t, z1, T2) = 2o,
and the constant diffusion coefficient vectors
() () () (0)
where r is a constant.
>SLO(x[2], [x[1],x[21],[[r,0],[0,r]1]);

x[2]

giving the result L°X (¢, z1, z2) = 5.

SEE ALSO: stochastic, stochastic[L0], stochastic[LJ], stochastic|[MLJ],
stochastic[Taylor2]

21

4.4 Stratonovich transformation formula

For a sufficiently smooth transformation U : [0, T]|xRY — R of the solution X; of the
Stratonovich SDE

M
dX, = al(t, X;)dt + > b (t,X;) o dW}
j=1
the scalar process Y; = U(t, X;) satisfies the a vector Stratonovich stochastic differ-
ential

ou XN .U M N oU
dy; = [— i dt bt —— o dW? 4.4
= (G e sy dl oaw, (14)

1=11i=1
where the terms are all evaluated at (¢, X;). In operator form this is

M)
dY, = L°U(t, X)t) dt + 3" LU (t, X,) o dWj.

i=1

chainrule:=proc(U::1list(algebraic),a::list(algebraic),
b::list(list(alge braic)))
local i,k,10,1j,so0ln;
for i from 1 to nops(U) do
10:=SLO(U[i],a,b)*dt;
1j:=0;
for k from 1 to nops(b) do
1j:=1j+LJ(U[i],b,k) *odW.1i;

od;
soln[i]:=dX.i=10 +1j;
od;
RETURN (eval(soln));
end:

EXAMPLE: Consider the function U(t, X;) = X? and the Stratonovich SDE
dXt = aXt dt + bXt o th

Then we have:

> chainrule([(x[1]1)"2]1,[a 1,[[b11);
table([
1 =(dX1 = 2 a x[1] dt + 2 b x[1] odW1)

D.

That means:
dY; = 2aY; dt + 2bY; o dW.

22

5 Linear Vector SDEs

5.1 Linearization

We consider the linearization of an N-dimensional Ito SDE with an M-dimensional
Wiener process

M
dX, = a(t, X;)dt + > b/ (t, X;) dWY (5.1)

j=1

about fixed solution X, resulting in the linear vector SDE

M .
dZy = A(t)Zydt + > B (t) Z, dW} (5.2)
j=1
where iy "
.. a’ _ . ? _
A = (¢, X (¢ BF() = ——(t, X (¢
(t) 527 (X (1), (t) 527 (L X (2))

fori,7=1,.., Nand k=1, ..., M.

The routine stochastic[linearize] has the CALLING SEQUENCE:
linearize(A,B,C);

with PARAMETERS

A - the list of $[all]l,al2],...,alN]]$,

B - listlist of $[[b[11],...,b[1MI],...,[b[N1],...,b[NM] 11,

C - list of [Xbar[1],...,Xbar[N]], where Xbar is the stationary solution
of the SDE.

The procedure linearize has the following code:

linearize:=proc(a::list(algebraic),b::list(list (algebraic)),c::1list(algebraic))
local i,tempA,tempB,j,k,1;
tempA:=array(l..nops(a),l..nops(a));
for i from 1 to nops(a) do for j from 1 to nops(a)
do tempA[i,j]:=diff (op(i,a),x[j1);
od; od;
for i from 1 to nops(a) do for j from 1 to nops(a) do for 1 from 1 to nops(c)
do tempAl[i,j]:=subs(x[1]=o0p(1l,c),tempAli,j]l);
od; od; od;
for k from 1 to nops(op(1l,b)) do tempB[k]:=array(l..nops(a),l..nops(a));
for i from 1 to nops(a) do for j from 1 to nops(a)
do tempB[k] [i,j]:=diff (op(k,op(i,b)),x[j1);
od; od;
for i from 1 to nops(a) do for j from 1 to nops(a) do for 1 from 1 to nops(c)

23

do tempB[k][i,j]:=subs(x[1l]l=0op(l,c),tempB[k][i,j]);
od; od; od;

od;
RETURN (A=map (simplify,convert(eval (tempA) ,matrix)) ,B=eval(tempB))
end:

EXAMPLE: Consider the 2-dimensional Ito SDE

dX} = XZ2dt,
dX? = (-bX}?—sinX; — csin2X})dt + (—a(X?)? + sin X})dW;,

where a, b and ¢ are constants and W; is a scalar Wiener process.

QZ — Xz(t)
a®> = —bX?—sin(X') — csin(2X') — a®(X?)® + aX?sin(X1).

> linearize([x[2],-b*x[2]-sin(x[1])-c*sin(2*x[1])]1, [[0],
—ax(x[2]) "2+sin(x[1]1)1]1, [0,0]);

Then
0 1 00
A_[—1—2c —b] and B_[l 0]’

so the linearized SDE (5.2) is
dz} = Zdi
dz} = ((-1-2)2} —bZ}) dt + Z} dW,.

5.2 Second moment equation

We consider the N-dimensional linear Ito SDE

dZ, = A(t)Z, dt + Z B*(t)Z, dWF, (5.3)

k=1

where A, B, B2, ..., BM are N x N matrices.
The NxN matrix valued second moment P(t) = E(Z;Z,") satisfies the deterministic
matrix differential equation

apP

= = A(t)P + PA(t) +ZB’“ t)PB*(t)

which is linear in P. On account of the symmetry of the matrix P, we can write this
equation as a linear system of the from

dp
dt

where is an £ N (N + 1)-dimensional vector consisting of the free components of P
and A(t) is a square matrix.

= A(t)p (5.4)

24

The routine stochasticimomenteqn] has the CALLING SEQUENCE:
momenteqn(A,B);

with PARAMETERS

A - the matrix A(t),
B - lists of matrixes B1(t),...,BM(t).

The procedure momenteqn calculates the new matrix A(¢) and has the following
code:

momenteqn:=proc(4,B)
local i,j,k,N,Btmp,Ctmp;
global Neues_A;
if type(A,array) then Btmp:=convert(A,listlist);else Btmp:=A; fi;
N:=nops (Btmp) ;

Neues_A:=array(1..N*(N+1)/2,1. .N*(N+1)/2) ;Ctmp:=array(l..Nx(N+1)/2,1. .Nx(N+1)/2)
ap(A);
pa(4);
for i from 1 to N*(N+1)/2 do
for j from 1 to N*x(N+1)/2 do
Ctmp[i,j]:=0;
od;
od;
for k from 1 to nops(B) do
bpb (B[k]);
for i from 1 to N*(N+1)/2 do
for j from 1 to Nx(N+1)/2 do
Ctmp[i,j]l:=Ctmp[i,j]l+B3[1i,]j];
od;
od;
od;
for i from 1 to N*(N+1)/2 do
for j from 1 to N*x(N+1)/2 do
Neues_A[i,j]:=B1[i,jl+B2[i,j]1+Ctmpl[i,j];
od;
od;
RETURN (evalm(Neues_A));
end:

This procedure requires other procedures. It is not necesary to call these proce-
dures, but they are must be declared (in the package) before calling the procedure
momenteqn (see the APPENDIX).

EXAMPLE: Let

A11 A12 Bll Bl2
A= ' ’ and B = ’ ’ .
[] lB21 B22]

’ ’

We set E = [B] (list of arrays) and call momenteqn(A,E), obtaining

2411+ Bi,1? 2A12+2B;12B11 By,
Ao 1 +By,1Ba1 Ai1+ Az 2+ B1,2Bs 1 +B1,1 B2 2 A2+ B 2B
By 12 2A491+2B22Bs1 2 Ag 5 + By, o?
The equation (5.4) is thus
dp1 = (2A1,1 + B1,12) P1+ (2A41,2+2B1,2B1,1)p2 + (31,22) D3
dps = (Ag,1+ B1,1B2,1)p1 + (A1,1 + A2+ B1,2 By 1 + B1,1 B2,2) Po
+ (A1,2+ B1,2 B2,2) D3
dp3 = (32,12) P1+(2A21+2By 2B 1) P2+ (2 A 2+ 32,22) D3

The procedures matrix2pvector and pvector2pmatrix transform a symmetry ma-
trix to a vector and a vector to an symmetry matrix, respectively. Here they are used
to change the matrix P to the vector p and the vector p to the matrix P, respectively.
The procedure matrix2pvectorhas the following code (see the APPENDIX for the
procedure pvector2pmatrix):

matrix2pvector:=proc(p)
local i,j,k,ptmp;
global pvector;
if type(p,array) then ptmp:=convert(p,listlist);else ptmp:=p; fi;
pvector:=array(l..nops (ptmp) * (nops (ptmp) +1) /2) ;
k:=0;
for i from 1 to nops(ptmp) do
if (i>1) then k:=k+(nops(ptmp)-i+2); fi;
for j from i to nops(ptmp) do
pvector [k+j-i+1] :=ptmp[i,j];
od;
od;
RETURN (eval (pvector)) ;
end:

EXAMPLE: Let
2 5 10 17 26

5 6 11 18 27
P=|10 11 12 19 28
17 18 19 20 29
26 27 28 29 30

After calling pmatrix2pvector(P); we obtain
2, 5, 10, 17, 26, 6, 11, 18, 27, 12, 19, 28, 20, 29, 30].
EXAMPLE: Consider the 2 x 2 symmetric matrix written in the listlist form
=, 2], 2, 4.
For p the procedure pmatrix2pvector(P); yields
1, 2, 4].

These examples for the first procedure show that it is possible to have a matrix or a
listlist as an input parameter.

26

5.3 Spherical coordinates

We consider the N-dimensional linear Stratonovich SDE

M
dZ, = A(t)Z,dt + > B*(t)Z, 0 dWF, (5.5)
k=1
where A, B, B2, ..., BM are NxN matrices, and convert it to spherical coordinates

r =|z| and s = z/|z| € S¥! (assuming z # 0). The resulting system of equations is

M
dR, = Riq"(Si)dt+ > Riq"(S;) o dWf (5.6)
k=1
M
dS; = h(Sy, A)dt+ " h(S;, B*) o dWf (5.7)
k=1

where
M o1 T 2
q(s) =sTAs+ > <§ST (Bk + (Bk)) s — (sTBks) > :
k=1
(s) =s'As, q*(s) =s"BFs, h(s,A) = (A — (sTAs)I) s.
The routine stochastic[sphere| has the CALLING SEQUENCE:

sphere(A,B);

with PARAMETERS

A - the matrix A(t),
B - lists of matrixes $B1(t),...,BM(t).

It calculates the values for
q(s), ¢°(s), ¢*(s), h(s,A)and h(s,B*) fork=1,...,.M
and has the following code:

sphere:=proc(a,b)
global q,q0,qgk,h,hk;
local i,j,k,tempa,tempb,stempbs,N,tmp;

if type(a,array) then tmp:=convert(a,listlist);else tmp:=a; fi;
N:=nops (tmp) ;

hk:=evaln(hk); h:=evaln(h); gk:=evaln(qgk);

q:=evaln(q); q0:=evaln(q0) ;tempa:=evaln(tempa) ;tempb:=evaln(tempb) ;

qO0:=sum(’sum(’s[il*ali,j]’,’1i’=1. .M *s[j]1’,’j’=1..N);
for k from 1 to nops(b) do

gk [k] :=sum(’sum(’s[il*b[k] [1,j]1’,’1’=1.. M *s[j1’,’j’=1..N);
od;

27

for k from 1 to nops(b) do

stempbs[k] :=sum(’sum(’s [i]* (b[k] [i, j1+b[k] [j,1i])?,’i’=1. .M *s[j]1’,’j’=1..0);
od;

q:=90+ sum(’0.5*stempbs[k]-qk[k]~2’,’k’=1. .nops(b));

for i from 1 to N do
for j from 1 to N do
if (i=j) then tempali,i]:=ali,i]-qO;
else tempali,jl:=ali,j];
fi;
od;
od;

for i from 1 to N do
h[i] :=sum(’tempali,j]’,’j’=1..N);
od;

for k from 1 to nops(b) do
for i from 1 to N do
for j from 1 to N do
if (i=j) then tempb[k][i,il:=bl[k][i,i]l-qk[k];
else tempblk][i,j]:=blk][i,jl;
fi;
od;
od;
od;
for k from 1 to nops(b) do
for i from 1 to N do
hk[k] [i] :=sum(’tempb[k] [i,j]’,’j’=1..N);
od;
od;

end:

The variables here are defined as global, which means that to determine the value
of ¢(s), for example, we call sphere(A,B): q;.

EXAMPLE: Consider the matrices

2 2 3 1
ae23] i [21]

which are input into Maple as:

>A:=array(1..2,1..2,[[2,2],[1,111):
>Bl:=array(1..2,1..2,[[3,1]1,[4,2]1]1):
>B:=[B1]:

Then

28

> sphere(A,B):
> q;
(2 S1 + 82) S1 + (2 S1 + 82) s9 + .5000000000 (6. s1 + 5. 82) S1
+ .5000000000 (5. 81 +4.82) 82 — 1. ((3.81 + 4. 82) 81 + (81 + 2. 82) 32)2
> q0;
(2 81 + 82) 81 + (2 81 + 32) S92
> print (qk);
table([
1=(3s1 +4s2)s1+ (51 +282)s2
)
> print (h);
table([
1=4— (281 +s2)s1 — (281 +52)s2
2=2— (281 +52)sl — (281 +Sz)Sg
1)
> print (hk) ;
table([
1 = table(|

1=4—(3s1+4s2)81 — (81 +282) 82
2=6—(3s1 +45s2)s1 — (51 +282) 82
)
)

6 Strong Numerical Schemes

We consider a the N-dimensional [to SDE with an M-dimensional Wiener process

M .
dX, = a(t, X,)dt + > b (t, X,) dW (6.1)

j=1
and some strong stochastic Taylor schemes for this equation. The final order 2.0
scheme will be the corresponding Stratonovich SDE.
In all of the schemes that follow, the coefficients are all evaluated at the point

(tn, Yn)-

29

6.1 Euler scheme

The FEuler scheme has the componentwise form

M
Vi, =YF+ad A, + Y ok AW (6.2)
j=1
fork =1, ..., N, where
An - tn+1 —ty

is the length of the nth time step and

AWI =Wi —wi
is the N(0;A,) distributed increment of the jth component of the M-dimensional
standard Wiener process W on the discretization subinterval [,,, 7,,;1]. Here AW

and AW72 are independent for j; # jo.

The routine stochastic[Euler] constructs stochastic Taylor scheme of strong or-
der 0.5 known as the Euler scheme for an Ito SDE 6.1. Its CALLING SEQUENCE
is

Euler([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);

with PARAMETERS

al,..,aN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables x[N]
and t.

representing the drift and the diffusion coefficient vectors of the SDE.

stochastic[Euler] :=proc(a::list(algebraic),b::1list(1list(algebraic)))
local i,u,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]+LO(x[i],a,b)*Delta[n]+sum(’LI(x[i],b,])*
Delta*W.j[n]’,’j’ = 1 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od
od;
RETURN (eval (soln))
end:

The call Euler([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns the Euler
scheme for an N—-dimensional Ito SDE with M-dimensional noise which has drift
coefficients al,. .., aN and diffusion coefficients [b11,...,b1M],..., [bN1,... ,bNM].

The output consists of the variables Y N[n|, DeltaW M|n|, and Deltaln|. Y N[n| de-
notes the strong order 0.5 stochastic Taylor approximation to z|N| at the n-th step.
DeltaW Mn| denotes the change in the M—dimensional Wiener process at the n-th
step. Delta[n] denotes the step size at the n-th step.

30

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked driectly via the call stochastic[Euler].

EXAMPLE: Consider the 2-dimensional SDE driven by a 2—-dimensional Wiener pro-
cess Wy = (W}, W?2), given by

X} X? T L s)
d = dt + aw, + awy,
X? X} $ r

that is with drift components a'(t, 1, s) = %o, a®(t,z1,72) = x; and the constant
diffusion coefficient vectors

5 bt T 2 b1 s
A2) s)] 2]\)
where r and s are constants.

>Euler([x[2],x[1]],[[r,s],[s,r]]);

table([
1= (1[n + 1]

Yi[n] + Y2[n] Delta[n] + r Delta Wi[n] + s Delta W2[n])

2 = (Y2[n + 1]
D

Y2[n] + Y1[n] Delta[n] + s Delta Wi[n] + r Delta W2[n])

The resulting Euler scheme is

YnlJrl Yl Y2 T L s)
= + Ay + AW, + AW,
V2, Y2 s $ r
SEE ALSO: stochastic, stochastic[L0], stochastic[LJ], stochastic[Milstein],
stochastic[Taylor1hlf], stochastic[Taylor2] .

6.2 Milstein scheme
The Milstein scheme has the componentwise form
M . . M . .
Y:H = er +a* An + Z blmAWrg + Z LJIbk’JZ[(jlajZ)?”’ (6.3)
Jj=1 J1,j2=1

where K =1, ..., N and [is the multiple Ito integral

jlij);n
Tn+1 81 . .
[(j1,j2);" = / / dWsjzl dWst (6'4)
in general, with

Ty dym = % {(Awglf - An}

31

and similarly for I;, j,).n-

The routine stochastic[Milstein] constructs stochastic Taylor scheme of strong
order 1.0 known as the Milstein scheme for an Ito SDE (6.1). Its CALLING SE-
QUENCE is

Milstein([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);

with PARAMETERS

al,..,aN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables x[N]
and t.

representing the driftand the diffusion coefficient vectors of the SDE.

stochastic[Milstein] :=proc(a::list(algebraic),b::list(list(algebraic)))
local u,i,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]+LO(x[i],a,b)*Delta[n]+sum(’LI(x[i],b,])*
Delta*W.j[n]’,?j’ = 1 .. nops(op(1,b)))+
sum(’sum(’LI(op(j2,0p(i,b)),b,j1)*I[j1,j2]°,
’j12 = 1 .. nops(op(1,b)))?,?j2> =1 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od
od;
RETURN (eval (soln))
end:

The call Milstein([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns the Mil-
stein scheme for an N—dimensional SDE (6.1) with A/—dimensional noise which has
drift coefficients al, ..., aN and diffusion coefficient vectors [b11,...,b1M], ...,
[bN1,...,bNM]. The output consists of the variables Y N[n], DeltalV M[n], Delta[n]
and I[(j1,72)]. Here Y N[n| denotes the strong order 1.0 stochastic Taylor approx-
imation to z|[N] at the n-th step, DeltaW M[n] denotes the increment in the M-
dimensional Wiener process at the n-th step, Delta[n| denotes the step size at the
n-th step, and I[(j1, j2)] denotes the double Ito integral (6.4)

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[Milstein)].

EXAMPLE: Consider the 2—dimensional SDE driven by a 2-dimensional Wiener pro-
cess W, = (W}, W2), given by

X} X2 r) s)
d — dt + dwl + awe?,
X2 X} s r

that is with drift components a'(t, z1,xs) = z2, a®(t,z1,72) = z; and the constant
diffusion coefficient vectors

. pi:t T) b1]
b= pl:2 - s ’ b* = p2:2 - r ’

32

where r and s are constants.

>Milstein([x[2],x[111,[[r,s],[s,r]l]);

table([
= (Yi[n + 1]

Yi[n] + Y2[n] Delta[n] + r Delta Wi[n] + s Delta W2[n])

= (Y2[n + 1]
D

The resulting Milstein scheme is

Vi vl Y2 r) s)
= + A, + AW, + AWz,
Y2, Y2 Yl s T

which is actually the same as the Euler scheme in this case because the SDE here has
additive noise.

SEE ALSO: stochastic, stochastic[L0], stochastic[LJ], stochastic[Euler],
stochastic[Taylor1hlf], stochastic[Taylor2]

Y2[n] + Y1[n] Deltaln] + s Delta Wi[n] + r Delta W2[n])

6.3 Order 1.5 strong stochastic Taylor scheme
The kth component of the order 1.5 strong Taylor scheme is given by
1
Vi, = YE4d A, + 3 L'a* A2 (6.5)
M

+ 30 (5 AWE + L g jy.n + 0" T501n)

i=1

M
+ Y LI, Gy + Z R C A

Ji,J2=1 J1,J2,J3=1

where I(;, j, j;)m 15 the multiple Ito integral

tn .
I, jano); /t +1/ / dWh Wn dw? (6.6)

in general, with
T :1{1 (am#)’ - a }Ale
(41.d1.d1)m 213 n n n
and
T,y = AWZ An — I(0)n
in specific cases. Here the random variable AZI := I(;).. is N(0;3A,) normally
distributed and has covariance E(AZIAW] = A2,

The routine stochastic[Taylor1hlf| constructs stochastic Taylor scheme of strong
order 1.0 Taylor scheme for an Ito SDE (6.1). Its CALLING SEQUENCE is

Taylor1hlf([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);
with PARAMETERS

33

al,..,aN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables x[N]
and t.

representing the drift and the diffusion coefficient vectors of the SDE.

stochastic[Taylor1lhlf] :=proc(a::1list(algebraic),b::1ist(list(algebraic)))
local u,i,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]l+a[il*Delta[n]+1/2*L0(a[i],a,b)*Deltal[n] 2+
sum(’op(j,op(i,b))*Delta*W.j[n]+L0(op(j,op(i,b)),a,b)*I[0,j]+
LJ(alil,b,j)*I[j,0]1°,°j> = 1 .. nops(op(1,b)))+
sum(’sum(’LI(op(j2,0p(i,b)),b,j1)*I[j1,j2]°,
’j12 = 1 .. nops(op(1,b)))?,?j2> =1 .. nops(op(1,b)))+sum(
’sum(’ sum (LI (LJ (op (p3,0p(i,b)),b,p2) ,b,p1)*I[pl,p2,p3]7,
’p1? = 1 .. nops(op(1,b)))?,’p2? =1 .. nops(op(1,b)))?’,
’p3? =1 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u]l] = Y.u[n],soln[i]) od
od;
RETURN (eval(soln))
end:

The call Taylor1hlf([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns the strong
order 1.5 approximation for an N—dimensional SDE (6.1) with M—-dimensional noise
which has drift coefficients al, ..., aN and diffusion coefficient vectors [b11,...,b1M],
.. [BN1,...,bNM].

The output consists of the variables Y N[n|, DeltaW M|n|, Delta[n], I[(j1,j2)], and
I1(41,72,73)]. Here Y N[n] denotes the strong order 1.5 stochastic Taylor approxima-
tion to z[N] at the n-th step, DeltalW’ M [n]| denotes the change in the M—dimensional
Wiener process at the n-th step, Delta[n| denotes thestep size at the n-th step.
whileI[(71,2)] and I[(j1, 72, 73)] denote the multiple Ito integrals (6.4) and (6.6).

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[Taylor1hlf].

EXAMPLE: Consider the 2—dimensional SDE driven by a 2—-dimensional Wiener pro-
cess Wy = (W}, W?2), given by

X} X2 T L s)
d , | = dt + aw, + awy,
X: X} $ r

that is with drift components a'(t, z1,xs) = z2, a®(¢,z1,72) = z; and the constant
diffusion coefficient vectors

bl _ bl’l . T b2 . b2’1 .)
B b1’2 B S , B b2’2 B r ,
where r and s are constants.

34

>Taylorihlf ([x[2],x[11],[[r,s], [s,r]]);

table ([
2
(Yi[n + 1] = Yi[n] + Y2[n] Delta[n] + 1/2 Y1i[n] Deltal[n]
+ r Delta Wi[n] + s I[1, 0] + s Delta W2[n] + r I[2, 0]),

1

2
(Y2[n + 1] = Y2[n] + Y1[n] Deltal[n] + 1/2 Y2[n] Deltal[n]
+ s Delta Wi[n] + r I[1, O] + r Delta W2[n] + s I[2, 0])

N
]

D

The resulting order 1.5 strong Taylor scheme scheme is

Vi Yl Y? 1 [Y?) r)
= + A, + = (A,)" + AW,
Y2, Y2 y! 2 | v s
S 9 S r
+ AW, + T1,0)m + I(2,0);n;
T T S

SEE ALSO: stochastic, stochastic[L0], stochastic[LJ], stochastic[Euler],
stochastic[Milstein], stochastic[Taylor2] .

6.4 2nd order stochastic Taylor scheme

We now consider the N-dimensional Stratonovich SDE with an M—dimensional Wiener
process

M
dX; = a(t,Xy)dt + > b (t, X;) o dW} (6.7)
j=1
for which the kth component of the order 2.0 strong Taylor scheme is given by

1
Vi, = Yi+d' A+ " AP (6.8)

+ 0 (B AW 4 LW T) + Lia* J0))
j=1

5
1.72

J

(thk JZ i2) + LOLJIbk JZJO]l,Jé)
1

LJILObk’n '](11 0,j2) T LJIL”ak ‘](11,12,))

m
Jirizpk.ds 7, . .
+ Z L L*b J(Jl,Jz,J:s)
J1,92,j3=1

+ Y LRLELPO TG,y i)

J1,92,J3,94=1

35

The Jj, j,) and J(;, j,.j;) €xpressions here denote the corresponding double and triple
Stratonovich integrals with respect to the given Wiener process.

The routine stochastic[Taylor2] constructs the stochastic Taylor scheme of strong
order 2.0 Taylor scheme for the Stratonovich SDE (6.7). Its CALLING SEQUENCE is

Taylor2([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);

with PARAMETERS

al,..,aN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables x[N]
and t.

represent the drift and the diffusion coefficient vectors of the Stratonovich SDE (6.7).

stochastic[Taylor2] :=proc(a::1list(algebraic),b::list(list(algebraic)))
local u,i,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]+correct(a,b,i)*Deltaln]+
1/2*SLO0(correct(a,b,i) ,a,b)*Delta[n] ~2+
sum(’op(j,op(i,b))*DeltaxW.j[n]+SLO(op(j,op(i,b)),a,b)*J[0,jl+
LJ(correct(a,b,i),b,j)*J[j,0]1°,’j’> = 1 .. nops(op(1,b)))
+sum(’sum(’LI(op(j2,0p(i,b)),b,j1)*J[j1,j2]1+
SLO(LJ(op(j2,0p(i,b)),b,j1),a,b)*J[0,j1,j2]+
LJ(SLO(op(j2,0p(i,b)),a,b),b,j1)*J[j1,0,j2]1+
LJ(LJ(correct(a,b,i),b,j2),b,j1)*J[j1,j2,0]",
’j1° = 1 .. nops(op(1,b)))’,
’§j2? =1 .. nops(op(1,b)))+sum(
?sum(’sum(’LI (LI (op(p3,0p(i,b)),b,p2),b,pl)*JI[pl,p2,p3]1°,
’pl? = 1 .. nops(op(1,b)))?,’p2’ =1 .. nops(op(1,b)))’,
’p3? = 1 .. nops(op(1,b)))+sum(’sum(’ sum(
’sum(°LJ(LJ(LJ (op (m4,o0p(i,b)),b,m3),b,m2),b,ml1)*J[ml,m2,m3,m4]’,
'm1’ =1 .. nops(op(1,b)))?,’m2’ = 1 .. nops(op(1,b)))
’,’m3’ =1 .. nops(op(1,b)))?,’m4’> = 1 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od
od;
RETURN (eval (soln))
end:

The call Taylor2([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns the strong
order 2.0 stochastic Taylor approximation for the N—dimensional Stratonovich SDE

(6.7) with M—dimensional noise which has drift coefficients al,...,aN and diffusion
coefficient vectors [b11,...,b1M], ..., [bN1,...,bNM].

The output consists of the variables Y N[n|, DeltaW M [n], Delta[n], J[(j1,52)],

J[(j1,72,43)], and J[(41, 52, 73, j4)]. here Y N|n]| denotes the strong order 2.0 stochas-
tic Taylor approximation to z[V] at the n-th step, DeltalV M[n] denotes the increment
in the M—dimensional Wiener process at the n-th step, Delta[n| denotes the step size

36

at the n-th step, while J[(j1, 72)], J[(41,72,53)], and J[(51, 2,73, j4)] denote multi-
ple Stratonovich integrals.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[Taylor2].

EXAMPLE: Consider the 2-dimensional Stratonovich SDE driven by a 2—dimensional
Wiener process W; = (W}, W2), given by

X} X? r L s)
d = dt + odW, + odW,
X2 X} $ r

that is with drift components a'(¢,z;,%s) = xo, a®(t,z1,72) = x; and the constant
diffusion coefficient vectors

) pi:t T) b1]
b:bm:s’b:bz’?:r’

where r and s are constants.

>Taylor2([x[2],x[11],[[r,s],[s,r]]);

table([
2
1 = (Yi[n + 1] = Yi[n] + Y2[n] Deltaln] + 1/2 Y1[n] Deltalnl]
+ r Delta Wi[n] + s J[1, 0] + s Delta W2[n] + r J[2, 0])
2
2 = (Y2[n + 1] = Y2[n] + Y1[n] Deltaln] + 1/2 Y2[n] Deltal[n]
+ s Delta Wi[n] + r J[1, 0] + r Delta W2[n] + s J[2, 0])
D

The resulting order 2.0 strong Stratonovich Taylor scheme scheme is

Yo Y, Ye 1Y N .
= + A, + = (A,)" + AW,
Yo Y; Y, 2\ Y, s
S S 9 T
+ J1,0)m + AW+ J(2,0)m)
r r S

SEE ALSO: stochastic, stochastic[LJ], stochastic[SLO], stochastic[Euler],
stochastic[Milstein], stochastic[Taylor1hlf] , stochastic[correct] .

7 Commutative Noise

We consider a the N—dimensional Ito SDE with an M—dimensional Wiener process

M
dX, = a(t, X;)dt + >V (t, X;) dW7. (7.1)

i=1

37

Strongly convergent numerical schemes can be simplified to avoid the need to simulate
multiple stochastic integrals when the noise coefficients ¥/, j = 1, ..., M satisfy certain
relationships known as commutative noise.

7.1 Commutative noise of 1st kind

The SDE is said to have commutative noise of the first kind when the diffusion
coefficients satisfy the condition

[Irpkdz — [dzpkin (7.2)

forall j, jo=1,..., M, k=1,..., N and (t,z) € R xRV,
For instance, additive noise, diagonal noise and linear noise all satisfy this com-
mutativity condition, where diagonal noise means that

.7].

, 0
b™i(t,z) =0 and W(t’) =0

and linear noise means that _ .
bR (t,) = bFI(t) «*

forallj=1,..., M, k=1,..., Nand (¢, z) € R"xR".

The routine stochastic[comm1] informs the user if the diffusion matrix of an Ito
SDE has commutative noise of the first kind. Its CALLING SEQUENCE

comml1([bll,..,b1M],..,[bN1,..,bNM]);

has PARAMETERS

[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
x[N] and t.

which are the diffusion coefficient vectors of the SDE.

stochastic[comml] :=proc()
local LJ1,LJ2,k,jl1,j2,flag,p;
for p to nargs do

if type(args[pl,list) <> true then
ERROR(‘Expecting input to be an expression sequence of lists‘) fi
od;
for k to nargs do
for j1 to nops(args[1]) do
for j2 to nops(args[1]) do
LJ1 := sum(’op(jl,args[1])*diff (op(j2,args[k]),x[1]1)’,
’1> = 1 .. nargs);
LJ2 := sum(’op(j2,args[1])*diff (op(jl,args[k]),x[1]1)’,
’1? = 1 .. nargs);
if LJ1 <> LJ2 then flag := 1 fi

38

od
od
od;
if flag = 1 then
RETURN (‘Commutative noise of the first kind doesn’t exist for this system®)
else RETURN(‘This system exhibits commutative noise of the first kind*)
fi;

end:

The call comm1([bll,..,b1M],..,[bN1,..,bNM]); returns a statement indicating
whether or not the SDE with this diffusion coefficient matrix has commutative noise
of the first kind (7.2). Here [b11,...,b1M],..., [bN1,...,bNM]| denotes the M N-
dimensional diffusion coefficient vectors, where N is the dimension of the SDE and
M is the dimension of the Wiener process.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[comm1]

EXAMPLE: Consider a 2-dimensional Ito SDE with the variable diffusion coefficient

vectors
P 1 P 0
o A o " o p2:2 o T)

>comm1([1,0],[0,x[1]1]);

Commutative noise of the first kind doesn’t exist for this system

SEE ALSO: stochastic, stochastic[comm?2]

7.2 Commutative noise of 2nd kind

Commutative noise of the second kind arises when the noise coefficients satisfy the

condition
LIt Jizpkids — [d2 [d1pk.ds (73)

for all j1, jo, j3=1,..., M, k=1,..., N and (¢t,z) € RT xRV,

The routine stochastic[comm?2] informs the user if the diffusion matrix of an Ito
SDE has commutative noise of the second kind. Its CALLING SEQUENCE

comm?2([bll,..,b1M],..,[bN1,..,bNM]);

has PARAMETERS

[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in the variables
x[N] and t

which are the difffusion coeflicient vectors of the SDE.

39

stochastic[comm?2] := proc()
local LJ1LJ2,LJ2LJ1,k,p,j1,j2,]j3,flag;
for p to nargs do
if type(args[pl,list) <> true then
ERROR(‘Expecting input to be an expression sequence of lists‘) fi;
od;
for k to nargs do
for j1 to nops(args[1]) do
for j2 to nops(args[1]) do
for j3 to nops(args[1]) do
LJ1LJ2 := sum(’op(jl,args[m])*diff(sum(’op(j2,args[1])*
diff(op(j3,args[k]),x[1]1)?,’1’ = 1 .. nargs),x[m])’,
’m> = 1 .. nargs);
LJ2LJ1 := sum(’op(j2,args[m])*diff(sum(’op(jl,args[1])*
diff(op(j3,args[k]),x[1]1)?,’1’ = 1 .. nargs),x[m])’,
’m’> = 1 .. nargs);
if LJ1LJ2 <> LJ2LJ1 then flag := 1 fi;
od;
od;
od;
od;
if flag = 1 then
RETURN(‘Commutative noise of the second kind doesn’t exist for this
system‘)
else RETURN(‘This system exhibits commutative noise of the second kind‘)
fi;
end:

The call comm2([bl1,..,b1M],..,[bN1,..,bNM]); returns a statement indicating
whether or not the diffusion matrix of the SDE has commutative noise of the second
kind (7.3). Here [bll,...,b1M],..., [bN1,...,bNM] denote the M N-dimensional
diffusion coefficient vectors, where N is the dimension of the SDE and M is the di-
mension of the Wiener process.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[comm?2].

EXAMPLE: Consider an 2-dimensional Ito SDE with the variable diffusion coefficient

vectors
bt 1 b1 0
pt = = , b = =)
(b”) ((@) (a2) (b2) ((@))

>comm?2 ([1, (x[2])~2*(x[1])~4]1,[0,(x[1]1)"2]1);

Commutative noise of the second kind doesn’t exist for this system

SEE ALSO: stochastic, stochastic[comm1]

40

8 Weak Numerical Schemes

We consider a the N-dimensional Ito SDE with an M-dimensional Wiener process

M .
dX, = a(t,Xy)dt + > b (t, X;) dWY. (8.1)

i=1

8.1 Weak Euler scheme

The general multi-dimensional case d, m = 1, 2, ... the kth component of the Euler
scheme has the form .
Vi, =YF+adP A+ oM AW, (8.2)
j=1
with initial value Yy = X, where
A=T1,.1—T, and AW = W£n+1 - WTjn.
For weak convergence only the measure induced by the Ito process X needs to be
approximated, so the Gaussian increments AW in (1.1) can be replaced by simpler
random variables AW/ with similar moment properties giving a simpler scheme by
choosing more easily generated noise increments. This leads to the simplified weak
FEuler scheme u
Y =VE+ah A+ S o AW, (8.3)

i=1

where the AW? for j =1, 2, ..., m must be independent A, . -measurable random

variables with moments satisfying the conditions

Tn+1

B (a17)] + ‘E ((AWJ‘)3>‘ + ‘E ((AWj)2> _ A‘ < KA

for some constant K; see also (5.12.7). A very simple example of such a AW? in (1.2)
is a two-point distributed random variable with

P (AW = +VA) = %

The routine stochastic[wkeuler| constructs the stochastic Taylor scheme of weak
order 1.0, known as weak Euler schemes. Its CALLING SEQUENCE is

wkeuler([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);

with PARAMETERS:

al,..,alN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables
x[N] and t.

representing the drift and diffusion coefficient vectors of the SDE.

41

stochastic[wkeuler] :=proc(a::1list(algebraic),b::list(list(algebraic)))
local u,i,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]+LO0(x[i],a,b)*Delta[n]+
sum(’LJ(x[1],b,j)*Delta*Ws.j[n]’,’j’> = 1 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od
od;
RETURN (eval (soln))
end:

The call wkeuler([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns the simpli-
fied weak Euler scheme for an N-dimensional SDE with M —-dimensional noise which
has drift coefficients al, ..., aN and diffusion coefficient vecotrs [b11,...,b1M], ...,
[bN1,...,bNM]. The output consists of the variables Y N[n], DeltaWWsM|[n] and
Delta[n]. Here Y N|[n| denotes the 1st order simplified weak approximation to z[N]
at the n-th step, Deltal¥ sM|[n] denotes the increment in the M—dimensional noise
process at the n-th step (note here that WsM|n] does not need to denote a standard
Wiener processes, but can instead be independent random variables as described
above) and Delta[n] denotes the step size at the n-th step.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[wkeuler].

EXAMPLE: Consider the 2—dimensional SDE driven by a 2—-dimensional Wiener pro-
cess Wy, = (W}, W?2), given by

X} X} r) 0)
d = dt + aw, + awy,
X2 X2 0 r

that is with drift components a'(t,z1,z2) = x1, a®(t, z1,z2) = T and the constant
diffusion coefficient vectors

) bt r) b1 0
b e = y b — ==]
b2 0 b2 r
where 7 is a constant.

>wkeuler ([x[1],x[2]1], [[r,0],[0,r]]);

table([

[
I

(Yi[n + 1] Yi[n] + Y1[n] Deltaln] + r Delta Wsi[n])

N
I

(Y2[n + 1]

Y2[n] + Y2[n] Deltaln] + r Delta Ws2[n])
D

The resulting simplified weak Euler scheme is

YL, y! Y2 r\ . 0\ .
= + A, + AW} + AW?2,
Y2, Y2 Y} 0 r
SEE ALSO: stochastic, stochastic[LO], stochastic[LJ],stochastic[wktay2] .

42

8.2 Second order weak Taylor scheme

The kth component of the order 2.0 weak Taylor scheme takes the form

1
Y:—i—l _ YT:C " ak A + 5 Loak A2 (84)
+ > {BT AW + L T 5y + Lk I}

j=1
+ Z L7y [(j1,jz)'
J1,j2=1

Here multiple Ito integrals involving different components of the Wiener process are
used. These are generally not easy to generate, so the above scheme is more of
theoretical interest than of practical use. However, for weak convergence we can sub-
stitute simpler random variables for the multiple Ito integrals to obtain the following
simplified order 2.0 weak Taylor scheme with kth component

Vi, = YFt+ad" A+ L%’“A? (8.5)

+ Z {b’w + A (L% + Lia)} AW

j=1
1 ™ . . n . n .
4= Z [A1pkode (AW]lAW]z + le,jz) ‘
j17j2:1
Here the AW/ for j =1, 2,..., m are independent random variables satisfying the
moment conditions
B (aW)] + ‘E ((AW)‘ ‘E(AW))‘ (8.6)

rE(AW) A‘ < KA

((aw)) — 3A?

for some constant K and the Vj, ;, are independent two-point distributed random
variables with

1
P(‘/jl,jz = :l:A) = 5 (87)
fOI'jz == 1, ...,jl—l,
Vivin = —A (8.8)
and
Vivie = = Vi (8'9)
forjo =j1+1,...,mand j1 =1, ..., m. Here we can use a three-point distributed
random variable AW with
. 1 A 2
P (AW = +V3A) = o P (AW =0) = 3 (8.10)

43

The routine stochastic[wktay2] constructs simplified stochastic Taylor schemes of
weak order 2.0. Its CALLING SEQUENCE is

wktay2([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);

with PARAMETERS:

al,..,alN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables
x[N] and t.

representing the drift and diffusion coefficient vectors of the SDE.

stochastic [wktay2] :=
proc(a::1list(algebraic),b::1list(list(algebraic)))
local u,i,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]+a[i]l*Delta[n]+1/2*L0(a[i] ,a,b)*Delta[n] "2+
sum(’ (op(j,op(i,b))+1/2xDelta[n]*(LO(op(j,op(i,b)),a,b)+
LJ(alil,b,j)))*Delta*Ws.jnl’,’j> = 1 .. nops(op(1l,b)))+1/2%
sum(’sum(’LI(op(j2,0p(i,b)),b,jl)*(Delta”2*Ws.jl[n]*Ws.j2[n]+
V[j1,j21)?,°j1°> = 1 .. nops(op(1,b)))?,
’j2? = 1 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od
od;
RETURN (eval (soln))
end:

The call wktay2([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns the simpli-
fied weak order 2.0 stochastic Taylor scheme for an N-dimensional SDE with M-
dimensional noise which has drift coefficients al, ...,a/N and diffusion coefficient vec-
tors [b11,...,b1M],..., [bN1,...,bNM].

The output consists of the variables Y N[n], DeltaWsM|[n], V[(j1, 72)], and Delta[n].
Here Y N|[n| denotes the 2nd order simplified weak approximation to z[N] at the n-th
step, DeltalWWsM[n| denotes the change in the M—dimensional noise process at the
n-th step (note here that WsM|[n] does not denote standard Wiener processes, but
instead are independent random variables described above), V'[(j1,72)] denotes the
independent two-point random variables described above, and Delta[n| denotes the
step size at the n-th step.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked via the call stochastic[wktay2].

EXAMPLE: Consider the 2—dimensional SDE driven by a 2—-dimensional Wiener pro-
cess Wy, = (W}, W?2), given by

X} X} r 0
d , | = dt + dW} + dW?,
X; X? 0 r

44

that is with drift components a*(¢,z;,xs) = x1, a*(t,z1,72) = x2 and the constant
diffusion coefficient vectors

s r , [0 0
b* = pl2 - 0) b® = b2:2 - r ’

where 7 is a constant.

>wktay2([x[1],x[2]1]1, [[r,0],[0,r]1]);

table ([
2
1 = (Yi[n + 1] = Yi[n] + Y1[n] Deltaln] + 1/2 Yi[n] Deltal[n]
+ (r + 1/2 Delta[n] r) Delta Wsi[mn])
2
2 = (Y2[n + 1] = Y2[n] + Y2[n] Delta[n] + 1/2 Y2[n] Deltaln]
+ (r + 1/2 Delta[n] r) Delta Ws2[n])
D

The resulting weak order 2.0 Taylor scheme is

Yl Y1 Y1 (Y,
2+1 — 2 + 2 An + 5 (An)2
Y2, VE VE Y

r+ %T‘An . 0 -
+ AW, + . AW,
0 r 4+ ErAn

SEE ALSO: stochastic, stochastic[L0], stochastic[LJ], stochastic[wkeuler] .

SINSEEIR

8.3 Order 3 weak Taylor scheme
The kth component of the order 3.0 weak Taylor scheme takes the form

Vi, = YE+ad A+ Y AW + 3 Lk Iy (8.11)

j=1 i=0

+ Z Z lebk,jz [(]'1,]'2) + Z leszak](j1,j2,0)

J1=0 j2=1 J1,2=0
m m
Jiriepkds 1. .
+ Z Z L L™](11,12,13)‘
J1,72=0 jz=1

Various simplifications are possible in special cases that avoid the need to generate
the multiple stochastic integrals. See Chapter 14.3 of Kloeden and Platen [7]

The routine stochastic[wktay3] constructs stochastic Taylor schemes of weak order
3.0. Its CALLING SEQUENCE is

45

wktay3([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]);

with PARAMETERS:

al,..,alN - algebraics, given in the variables x[N] and t.
[b11,..,biM],..,[bN1,..,bNM] - lists of algebraics, given in variables
x[N] and t.

representing the drift and diffusion coefficient vectors of the SDE.

stochastic[wktay3] :=proc(a::1list(algebraic),b::1list(list (algebraic)))
local u,i,soln;
for i to nops(a) do
soln[i] := Y.i[n+1] = Y.i[n]+a[il#Delta[n]+
sum(’op(j,op(i,b))*Delta*W.j[n]’,’j’> = 1 .. nops(op(1,b)))+
sum(’MLJ(a[i],a,b,j0)*I[jO,0]°,?jO’ = O .. nops(op(1,b)))+
sum(’sum(’MLJ(op(j2,0p(i,b)),a,b,j1)*I[j1,j2]°,
’j2? = 1 .. nops(op(1,b)))?,’j1’> = 0 .. nops(op(1,b)))+
sum(’sum(°’MLJ(MLJ (a[i] ,a,b,k2),a,b,k1)*I[k1,k2,0]’,
’k1’ = 0 .. nops(op(1,b)))?,’k2’ = 0 .. nops(op(1,b)))+sum(
’sum(’ sum(*MLJ (MLJ (op (m3,0p(i,b)),a,b,m2),a,b,m1)*I[ml,m2,m3]’,
'm3’ = 1 .. nops(op(1,b)))?,’m2’ = 0 .. nops(op(1,b)))’,
'm1’ = 0 .. nops(op(1,b)));
for u to nops(a) do soln[i] := subs(x[u] = Y.u[n],soln[i]) od
od;
RETURN (eval (soln))
end:

SYNOPSIS: The call wktay3([al,..,aN],[[b11,..,b1M],..,[bN1,..,bNM]]); returns
the weak order 3.0 stochastic Taylor scheme for an N-dimensional SDE with M-
dimensional noise which has drift coefficients al, ..., aN and diffusion coefficient
vectors [b11,...,b1M], ..., [bN1,...,bNM]. The output consists of the variables
Y N[n], DeltaW M{n], I[(j1,32)], I[(j1,72,53)] and Delta[n]. Here Y N[n] denotes
the 3rd order weak approximation to z[N] at the n-th step, Deltal¥ M[n]| denotes
the increment in the M—dimensional Wiener process at the n-th step, I[(j1,52)] and
I[(41, 72, 73)] denote multiple Ito integrals described above, and Delta[n| denotes the
step size at the n-th step.

This routine is part of the stochastic package and is usually loaded via the call
with(stochastic). It can also be invoked directly via the call stochastic[wktay3].

EXAMPLE: Consider the 2—dimensional SDE driven by a 2—-dimensional Wiener pro-
cess Wy = (W}, W?2), given by

X} X? T L s)
d = dt + aw, + awy,
X2 X} s r

that is with drift components a'(¢,z;,%s) = xs, a®(t,z1,72) = x; and the constant

46

diffusion coeflicient vectors

. pi:t T) b1]
b:bm:s’ b= b2’2:r’

where r and s are constants.

>wktay3([x[2],x[1]1],[[r,s],[s,r1]);

table([
1 = (Yi[n + 1] Yi[n] + Y2[n] Delta[n] + r Delta Wi[n] + s Delta W2[n]
+ Yi[n] I[0, O] + s I[1, O] + r I[2, O] + Y2[n] I[O, O, O]

+r I[1, 0, 0] + s I[2, O, O1),

Y2[n] + Y1[n] Delta[n] + s Delta Wi[n] + r Delta W2[n]
+ Y2[n] I[0, O] + r I[1, O] + s I[2, O] + Yi[n] I[O, O, O]
+ s I[1, 0, O] + r I[2, O, O0])F¢,

2 = (Y2[n + 1]

D

The resulting order 3.0 weak Taylor scheme scheme is

Yl 1 Y} Y? T L s)
. — A+ AW, + AW,
Yo Y, Y, s r

SN

Yl s r
+ L(0,0,0)im> + I(1,0,0)m + I(2,0,0)m
Y r s

SEE ALSO: stochastic, stochastic[L0], stochastic[MLJ],stochastic[wkeuler],
stochastic[wktay2].

9 APPENDIX

9.1 Subprocedures for momenteqn

The following procedures are subprocedures for the calculation or transformtion parts
of (5.3). For example, the procedure position determines the position in the new
vector and the procedure ap transforms the product AP in a vector equation.
position:=proc(N,i,j)

global stelle;

stelle:=sum(’N-k+1’,’°k’=1..i-1)+j-i+1;

end:

ap:=proc (4)

47

local i,j,k,Atmp,N,counter;
global Bi;
if type(A,array) then Atmp:=convert(A,listlist);else Atmp:=A; fi;
N:=nops (Atmp) ;
Bi:=array(1..Nx(N+1)/2,1. . Nx(N+1)/2);
for i from 1 to Nx(N+1)/2 do
for j from 1 to Nx(N+1)/2 do
B1[i,j]:=0;
od;
od;
counter:=0:
for i from 1 to N do
for j from i to N do
counter:=counter+i;
for k from 1 to N do
if (j<=k) then Bi[counter,position(N,j,k)]:=A[i,k];
else Bi[counter,position(N,k,j)]:=A[i,k];
fi;
od;
od;
od;
RETURN (evalm(B1));
end:

pa:=proc(A)
local i,j,k,Atmp,N,counter;
global B2;
if type(A,array) then Atmp:=convert(A,listlist);else Atmp:=A; fi;
N:=nops (Atmp) ;
B2:=array(1..N*x(N+1)/2,1..Nx(N+1)/2);
for i from 1 to Nx(N+1)/2 do
for j from 1 to N*(N+1)/2 do
B2[i,j]:=0;
od;
od;
counter:=0:
for i from 1 to N do
for j from i to N do
counter:=counter+i;
for k from 1 to N do
if (i<=k) then B2[counter,position(N,i,k)]:=A[j,k];
else B2[counter,position(N,k,i)]:=A[j,k];
fi;
od;
od;
od;
RETURN (evalm(B2));
end:

bpb:=proc(B)
local i,j,k,1,Btmp,N,counter;
global B3;
if type(B,array) then Btmp:=convert(B,listlist);else Btmp:=B; fi;
N:=nops (Btmp) ;
B3:=array(1..N*x(N+1)/2,1..Nx(N+1)/2);

48

for i from 1 to Nx(N+1)/2 do
for j from 1 to N*x(N+1)/2 do
B3[i,j]:=0;
od;
od;
counter:=0:
for i from 1 to N do
for j from i to N do
counter:=counter+i;
for 1 from 1 to N do
for k from 1 to N do
if (k<=1l) then
B3[counter,position(N,k,1)]:=B3[counter,position(N,k,1)]
+B[i,k]1*B[j,1];
else
B3[counter,position(N,1,k)]:=B3[counter,position(N,1,k)]
+B[i,k]*B[j,1];
fi;
od;
od;
od;
od;
RETURN (evalm(B3));
end:

9.2 The inverse procedure pvector2pmatrix

The procedure pvector2pmatrix is the inverse of the procedure matrix2pvector.
It transforms a vector to an symmetry matrix and has following code:

pvector2pmatrix:=proc(pvector)
local i,j,k,ptmp,N;
global p;
if type(pvector,array) then ptmp:=convert(pvector,list);else
ptmp:=pvector; fi;
N:=-1/2+sqrt (1/4+2*nops (ptmp)) ;
p:=array(l..N,1..N);
k:=0;
for i from 1 to N do
if (i>1) then k:=k+(N-i+2); fi;
for j from i to N do
pli,jl:=ptmp[k+j-i+1];
if (i<>j) then plj,il:=pli,jl; fi;
od;
od;
RETURN (eval(p));
end:

EXAMPLE : Consider the 15-dimensional vector

p=[1,2,3,4,5,6, 789,10, 11, 12, 13, 14, 15].

49

The result of pvector2pmatrix(p); gives the 5 x 5 symmetric matrix P.

3 4 5
7 8 9
10 11 12
11 13 14
12 14 15

U W N
© 00N O N

References

[1]

2]

3]

[4]

[6]

7]

[10]

[11]

R.E. Crandall, Topics in Advanced Scientific Computation, Springer—Verlag, Heidel-
berg (1996)

S.0. Cyganowski, Solving Stochastic Differential Equations with Maple, MapleTech
Newsletter 3(2) (1996), 38—.

S.0. Cyganowski, A MAPLE Package for Stochastic Differential Equations, in “Com-
putational Techniques and Applications: CTAC95” (Editors A. Easton, & R. May),
World Scientific Publishers, Singapore (1996)

S. Cyganowski and P.E. Kloeden, Stochastic stability examined through MAPLE, in
Proc. 15th IMACS World Congress, Volume 1: Computational Mathematics (Editor:
A. Sydow), Wissenschaft & Technik Verlag, Berlin, 1997, 4372-4377.

W. Gander and J. Hrebicek, Solving Problems in Scientific Computing using Maple
and Matlab, Second Eddition, Springer—Verlag, Heidelberg (1995)

W.S. Kendall, Computer algebra and stochastic calculus, Notices Amer. Math. Soc.
37 (1990), 1254 .

P.E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations
Springer-Verlag, Heidelberg (1992)

P.E. Kloeden, E. Platen and H. Schurz, Numerical Solution of Stochastic Differential
Equations through Computer Ezperiments, Springer-Verlag, Heidelberg (1993).

P.E. Kloeden and W.D. Scott, Construction of Stochastic Numerical Schemes through
Maple, MapleTech Newsletter 10 (1993), 60—65.

G.G. Milshtein and M.V. Tret’yakov, Numerical Solution of Differential Equations with
Coloured Noise, J. Stat. Physics, 77 (1994) 691-715.

E. Valkeila, Computer algebra and stochastic analysis, some possibilities, CWI Quar-
terly 4 (1991), 229—

50

