1,418 research outputs found

    Masswe Colonic Haemorrhage from a Solitary Caecal Varix

    Get PDF
    A 51 year old lady with chronic active hepatitis presented with massive lower gastrointestinal tract bleeding. Angiography demonstrated a solitary varix in the caecum which was found at laparotomy to be entering the bowel wall at the site ofadhesions from a previous appendicectomy. The portal pressure was found to be raised. Aright hemicolectomy stopped the blood loss, but she subsequently died ofliver failure. Solitary colonic varices associated with adhesions are extremely rare and their optimal management has not been established

    AAC Congress Durum Wheat

    Get PDF
    Congress durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husn.) is adapted to the durum production area of the Canadian prairies. Averaged over three years, AAC Congress yielded significantly more grain than Strongfield and AC Navigator. AAC Congress had protein concentration significantly lower than Strongfield but significantly higher than Brigade. AAC Congress is eligible for grades of Canada Western Amber Durum. It has lower grain cadmium concentration and higher yellow pigment concentration than the check cultivars, except AAC Cabri

    AAC W1876 hard red spring wheat

    Get PDF
    AAC W1876 hard red spring wheat (Triticum aestivum L.) has grain yield and time to maturity within the range of the check cultivars: Katepwa, Laura, Lillian, Carberry, and CDC Kernen. AAC W1876 has an awned spike, a low lodging score indicative of strong straw, and a short plant stature typical of a semidwarf wheat. AAC W1876 expressed resistance to prevalent races of leaf rust, moderate resistance to stem rust, intermediate resistance to fusarium head blight, yellow rust, common bunt, and loose smut. Compared to the Canada Western Red Spring check cultivars, AAC W1876 had improved flour yield and lower flour ash. AAC W1876 is eligible for grades of Canada Western Red Spring

    stoPET v1.0: a stochastic potential evapotranspiration generator for simulation of climate change impacts

    Get PDF
    Potential evapotranspiration (PET) represents the evaporative demand in the atmosphere for the removal of water from the land and is an essential variable for understanding and modelling land–atmosphere interactions. Weather generators are often used to generate stochastic rainfall time series; however, no such model exists for the generation of a stochastically plausible PET time series. Here we develop a stochastic PET generator, stoPET, by leveraging a recently published global dataset of hourly PET at 0.1∘ resolution (hPET). stoPET is designed to simulate realistic time series of PET that capture the diurnal and seasonal variability in hPET and to support the simulation of various scenarios of climate change. The parsimonious model is based on a sine function fitted to the monthly average diurnal cycle of hPET, producing parameters that are then used to generate any number of synthetic series of randomised hourly PET for a specific climate scenario at any point of the global land surface between 55∘ N and 55∘ S. In addition to supporting a stochastic analysis of historical PET, stoPET also incorporates three methods to account for potential future changes in atmospheric evaporative demand to rising global temperature. These include (1) a user-defined percentage increase in annual PET, (2) a step change in PET based on a unit increase in temperature, and (3) the extrapolation of the historical trend in hPET into the future. We evaluated stoPET at a regional scale and at 12 locations spanning arid and humid climatic regions around the globe. stoPET generates PET distributions that are statistically similar to hPET and an independent PET dataset from CRU, thereby capturing their diurnal/seasonal dynamics, indicating that stoPET produces physically plausible diurnal and seasonal PET variability. We provide examples of how stoPET can generate large ensembles of PET for future climate scenario analysis in sectors like agriculture and water resources with minimal computational demand.</p

    Global patterns and dynamics of climate-groundwater interactions

    Get PDF
    Groundwater, the largest available store of global freshwater1, is relied upon by more than two billion people2. It is therefore important to quantify the spatiotemporal interactions between groundwater and climate. However, current understanding of the global-scale sensitivity of groundwater systems to climate change3,4—as well as the resulting variation in feedbacks from groundwater to the climate system5,6—is limited. Here, using groundwater model results in combination with hydrologic data sets, we examine the dynamic timescales of groundwater system responses to climate change. We show that nearly half of global groundwater fluxes could equilibrate with recharge variations due to climate change on human (~100 year) timescales, and that areas where water tables are most sensitive to changes in recharge are also those that have the longest groundwater response times. In particular, groundwater fluxes in arid regions are shown to be less responsive to climate variability than in humid regions. Adaptation strategies must therefore account for the hydraulic memory of groundwater systems, which can buffer climate change impacts on water resources in many regions, but may also lead to a long, but initially hidden, legacy of anthropogenic and climatic impacts on river flows and groundwater-dependent ecosystems

    Assessing the sensitivity of modelled water partitioning to global precipitation datasets in a data‐scarce dryland region

    Get PDF
    Precipitation is the primary driver of hydrological models, and its spatial and temporal variability have a great impact on water partitioning. However, in data‐sparse regions, uncertainty in precipitation estimates is high and the sensitivity of water partitioning to this uncertainty is unknown. This is a particular challenge in drylands (semi‐arid and arid regions) where the water balance is highly sensitive to rainfall, yet there is commonly a lack of in situ rain gauge data. To understand the impact of precipitation uncertainty on the water balance in drylands, here we have performed simulations with a process‐based hydrological model developed to characterize the water balance in arid and semi‐arid regions (DRYP: DRYland water Partitioning model). We performed a series of numerical analyses in the Upper Ewaso Ng'iro basin, Kenya driven by three gridded precipitation datasets with different spatio‐temporal resolutions (IMERG, MSWEP, and ERA5), evaluating simulations against streamflow observations and remotely sensed data products of soil moisture, actual evapotranspiration, and total water storage. We found that despite the great differences in the spatial distribution of rainfall across a climatic gradient within the basin, DRYP shows good performance for representing streamflow (KGE >0.6), soil moisture, actual evapotranspiration, and total water storage (r >0.5). However, the choice of precipitation datasets greatly influences surface (infiltration, runoff, and transmission losses) and subsurface fluxes (groundwater recharge and discharge) across different climatic zones of the Ewaso Ng'iro basin. Within humid areas, evapotranspiration does not show sensitivity to the choice of precipitation dataset, however, in dry lowland areas it becomes more sensitive to precipitation rates as water‐limited conditions develop. The analysis shows that the highest rates of precipitation produce high rates of diffuse recharge in Ewaso uplands and also propagate into runoff, transmission losses and, ultimately focused recharge, with the latter acting as the main mechanism of groundwater recharge in low dry areas. The results from this modelling exercise suggest that care must be taken in selecting forcing precipitation data to drive hydrological modelling efforts, especially in basins that span a climatic gradient. These results also suggest that more effort is required to reduce uncertainty between different precipitation datasets, which will in turn result in more consistent quantification of the water balance

    First report of generalized face processing difficulties in möbius sequence.

    Get PDF
    Reverse simulation models of facial expression recognition suggest that we recognize the emotions of others by running implicit motor programmes responsible for the production of that expression. Previous work has tested this theory by examining facial expression recognition in participants with Möbius sequence, a condition characterized by congenital bilateral facial paralysis. However, a mixed pattern of findings has emerged, and it has not yet been tested whether these individuals can imagine facial expressions, a process also hypothesized to be underpinned by proprioceptive feedback from the face. We investigated this issue by examining expression recognition and imagery in six participants with Möbius sequence, and also carried out tests assessing facial identity and object recognition, as well as basic visual processing. While five of the six participants presented with expression recognition impairments, only one was impaired at the imagery of facial expressions. Further, five participants presented with other difficulties in the recognition of facial identity or objects, or in lower-level visual processing. We discuss the implications of our findings for the reverse simulation model, and suggest that facial identity recognition impairments may be more severe in the condition than has previously been noted

    Asexuality: Classification and characterization

    Get PDF
    This is a post-print version of the article. The official published version can be obtaineed at the link below.The term “asexual” has been defined in many different ways and asexuality has received very little research attention. In a small qualitative study (N = 4), individuals who self-identified as asexual were interviewed to help formulate hypotheses for a larger study. The second larger study was an online survey drawn from a convenience sample designed to better characterize asexuality and to test predictors of asexual identity. A convenience sample of 1,146 individuals (N = 41 self-identified asexual) completed online questionnaires assessing sexual history, sexual inhibition and excitation, sexual desire, and an open-response questionnaire concerning asexual identity. Asexuals reported significantly less desire for sex with a partner, lower sexual arousability, and lower sexual excitation but did not differ consistently from non-asexuals in their sexual inhibition scores or their desire to masturbate. Content analyses supported the idea that low sexual desire is the primary feature predicting asexual identity

    Identifying Trends in Masterplanning: A Typological Classification System

    Get PDF
    This document is the Accepted Manuscript version of the following article: Robert Adam, and Claire Jamieson, ‘Identifying trends in masterplanning: A typological classification system’, URBAN DESIGN International, Vol. 19 (4): 274-290, December 2014. The final publication is available at Springer via https://doi.org/10.1057/udi.2013.24.This article reports research carried out to develop a new typological method for the analysis of masterplans. This quantitative method of analysis can be used to produce comparative data that will help in the comparison of urban design typologies and their development over time. This article sets out the research to date, describing how the initial aims have developed from simple analysis to the creation of an analytical tool with wide applications. Comprising a detailed taxonomy of urban design features gathered from a wide database of recent and emerging masterplans, the system provides opportunities for further study such as trends, qualitative comparison against quantitative measurement, and comparison of aims and outcomes. This article will describe the methodology and process of research, while elaborating on the potential of the tool.Peer reviewedFinal Accepted Versio
    corecore