32 research outputs found

    Near-field focusing with optical phase antennas

    Get PDF
    We investigate the near-field focusing properties of three- dimensional phase antennas consisting of concentric rings designed to have source and image spots separated by several microns from the lens. Tight focal spots are obtained for silicon or gold rings patterned in a silica matrix. We analyze in detail the dependence of the performance of these lenses on geometrical parameters such as the number of rings, the ring thickness, and the focal distance. Subwavelength focal spots are found to form at distances of tens of wavelengths from the lens, thus suggesting applications to remote sensing and penlight microscopy and lithography. © 2009 Optical Society of America.This work has been supported by the Spanish MICINN (MAT2007-66050 and Consolider NanoLight.es) and by the EU (NMP4-2006-016881-SPANS and NMP4-SL-2008-213669- ENSEMBLE).Peer Reviewe

    Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon anti-bunching

    Get PDF
    The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of lightharvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to B20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a nonclassical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes

    Subtelomeric I-scei-mediated Double-strand Breaks Are Repaired By Homologous Recombination In Trypanosoma Cruzi

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Trypanosoma cruzi chromosome ends are enriched in surface protein genes and pseudogenes (e.g., trans-sialidases) surrounded by repetitive sequences. It has been proposed that the extensive sequence variability among members of these protein families could play a role in parasite infectivity and evasion of host immune response. In previous reports we showed evidence suggesting that sequences located in these regions are subjected to recombination. To support this hypothesis we introduced a double-strand break (DSB) at a specific target site in a T. cruzi subtelomeric region cloned into an artificial chromosome (pTAC). This construct was used to transfect T. cruzi epimastigotes expressing the I-SceI meganuclease. Examination of the repaired sequences showed that DNA repair occurred only through homologous recombination (HR) with endogenous subtelomeric sequences. Our findings suggest that DSBs in subtelomeric repetitive sequences followed by HR between them may contribute to increased variability in T. cruzi multigene families. © 2016 Chiurillo, Moraes Barros, Souza, Marini, Antonio, Cortez, Curto, Lorenzi, Schijman, Ramirez and da Silveira.7DEC11/51475-3, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo11/51693-0, FAPESP, Fundação de Amparo à Pesquisa do Estado de São Paulo306591/2015-4, CNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Constraining Primordial Non-Gaussianity with High-Redshift Probes

    Get PDF
    We present an analysis of the constraints on the amplitude of primordial non-Gaussianity of local type described by the dimensionless parameter fNLf_{\rm NL}. These constraints are set by the auto-correlation functions (ACFs) of two large scale structure probes, the radio sources from NRAO VLA Sky Survey (NVSS) and the quasar catalogue of Sloan Digital Sky Survey Release Six (SDSS DR6 QSOs), as well as by their cross-correlation functions (CCFs) with the cosmic microwave background (CMB) temperature map (Integrated Sachs-Wolfe effect). Several systematic effects that may affect the observational estimates of the ACFs and of the CCFs are investigated and conservatively accounted for. Our approach exploits the large-scale scale-dependence of the non-Gaussian halo bias. The derived constraints on {fNLf_{\rm NL}} coming from the NVSS CCF and from the QSO ACF and CCF are weaker than those previously obtained from the NVSS ACF, but still consistent with them. Finally, we obtain the constraints on fNL=53±25f_{\rm NL}=53\pm25 (1σ1\,\sigma) and fNL=58±24f_{\rm NL}=58\pm24 (1σ1\,\sigma) from NVSS data and SDSS DR6 QSO data, respectively.Comment: 16 pages, 8 figures, 1 table, Accepted for publication on JCA

    Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents

    Full text link

    Near-field optical phase antennas for long-range plasmon coupling

    No full text
    Plasmon-mediated long-range coupling of optical excitations is shown to be attainable using near-field phase antennas involving nanoparticles situated at focal spots. The antennas rely on metal-surface features that are geometrically arranged to produce constructive interference of plasmons emanating from a source spot over a designated image position. Large image-field intensities and focal spots as narrow as onethird of the wavelength are obtained for source-image separations of tens of micrometers. The ability to strongly couple distant focal spots through phase accumulation produced by engineered plasmon scatterers opens up a vast range of possibilities in contactless plasmon sensing, optical interconnects, and microscopy. © 2008 American Chemical Society.We thank Niek Van Hulst and Nikolay Zheludev for stimulating discussions. This work has been supported by the Spanish MEC (NAN2004-08843-C05-05, MAT2007-66050, and consolider NanoLight.es) and by the EU-FP6 (NMP4-2006-016881 “SPANS”).Peer Reviewe

    Silicon Mie resonators for highly directional light emission from monolayer MoS2

    No full text
    Controlling light emission from quantum emitters has important applications, ranging from solid-state lighting and displays to nanoscale single-photon sources. Optical antennas have emerged as promising tools to achieve such control right at the location of the emitter, without the need for bulky, external optics. Semiconductor nanoantennas are particularly practical for this purpose because simple geometries such as wires and spheres support multiple, degenerate optical resonances. Here, we start by modifying Mie scattering theory developed for plane wave illumination to describe scattering of dipole emission. We then use this theory and experiments to demonstrate several pathways to achieve control over the directionality, polarization state and spectral emission that rely on a coherent coupling of an emitting dipole to optical resonances of a silicon nanowire. A forward-to-backward ratio of 20 was demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2 by optically coupling it to a silicon nanowire

    Dual Nanoresonators for Ultrasensitive Chiral Detection

    No full text
    The discrimination of enantiomers is crucial in biochemistry. However, chiral sensing faces significant limitations due to inherently weak chiroptical signals. Nanophotonics is a promising solution to enhance sensitivity thanks to increased optical chirality maximized by strong electric and magnetic fields. Metallic and dielectric nanoparticles can separately provide electric and magnetic resonances. Here we propose their synergistic combination in hybrid metal-dielectric nanostructures to exploit their dual character for superchiral fields beyond the limits of single particles. For optimal optical chirality, in addition to maximization of the resonance strength, the resonances must spectrally coincide. Simultaneously, their electric and magnetic fields must be parallel and I /2 out of phase and spatially overlap. We demonstrate that the interplay between the strength of the resonances and these optimal conditions constrains the attainable optical chirality in resonant systems. Starting from a simple symmetric nanodimer, we derive closed-form expressions elucidating its fundamental limits of optical chirality. Building on the trade-offs of different classes of dimers, we then suggest an asymmetric dual dimer based on realistic materials. These dual nanoresonators provide strong and decoupled electric and magnetic resonances together with optimal conditions for chiral fields. Finally, we introduce more complex dual building blocks for a metasurface with a record 300-fold enhancement of local optical chirality in nanoscale gaps, enabling circular dichroism enhancement by a factor of 20. By combining analytical insight and practical designs, our results put forward hybrid resonators to increase chiral sensitivity, particularly for small molecular quantities.

    Tensile-strained GeSn photodetectors with conformal nitride stressor

    No full text
    Applying tensile strain with silicon nitride is demonstrated to improve the responsivity of germanium-tin (Ge1-xSnx) PIN photodetectors at longer wavelengths. Such external stressor films show promise for extending the application of Ge1-xSnx optoelectronic devices into the mid-infrared range
    corecore