157 research outputs found

    The Vital Role of the Kennedy Space Center Beachside Atmospheric Corrosion Test Site in Selecting Corrosion Protection Coatings for Increased Sustainability

    Get PDF
    First coatings testing located at the Cape side launch pads during the Gemini Apollo Programs for long-term protective coatings for atmospheric protection of carbon steel

    A Five-year Performance Study of Low VOC Coatings over Zinc Thermal Spray for the Protection of Carbon Steel at the Kennedy Space Center

    Get PDF
    The launch facilities at the Kennedy Space Center (KSC) are located approximately 1000 feet from the Atlantic Ocean where they are exposed to salt deposits, high humidity, high UV degradation, and acidic exhaust from solid rocket boosters. These assets are constructed from carbon steel, which requires a suitable coating to provide long-term protection to reduce corrosion and its associated costs. While currently used coating systems provide excellent corrosion control performance, they are subject to occupational, safety, and environmental regulations at the Federal and State levels that limit their use. Many contain high volatile organic compounds (VOCs), hazardous air pollutants, and other hazardous materials. Hazardous waste from coating operations include vacuum filters, zinc dust, hazardous paint related material, and solid paint. There are also worker safety issues such as exposure to solvents and isocyanates. To address these issues, top-coated thermal spray zinc coating systems were investigated as a promising environmentally friendly corrosion protection for carbon steel in an acidic launch environment. Additional benefits of the combined coating system include a long service life, cathodic protection to the substrate, no volatile contaminants, and high service temperatures. This paper reports the results of a performance based study to evaluate low VOC topcoats (for thermal spray zinc coatings) on carbon steel for use in a space launch environment

    Replacement for a Flex Hose Coating at the Space Shuttle Launch Pad

    Get PDF
    Aerocoat AR-7 is a coating that has been used to protect stainless steel flex hoses at NASA's Kennedy Space Center launch complex and hydraulic lines of the mobile launch platform (MLP). This coating has great corrosion control performance and low temperature application. AR-7 was developed by NASA and produced exclusively for NASA but its production has been discontinued due to its high content of volatile organic compounds (VOC) and significant environmental impact. The purpose of this project was to select and evaluate candidate coatings to find a replacement coating that is more environmentally friendly, with similar properties to AR-7. No coatings were identified that perform the same as AR-7 in all areas. Candidate coatings failed in comparison to AR-7 in salt fog, beachside atmospheric exposure, pencil hardness, Mandrel bend, chemical compatibility, adhesion, and ease of application tests. However, two coatings were selected for further evaluation

    Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2

    Get PDF
    Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented

    The Behavior of Environmentally Friendly Corrosion Preventative Compounds in an Aggressive Coastal Marine Environment

    Get PDF
    The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt

    Adhesion Testing of Firebricks from Launch Pad 39A Flame Trench after STS-124

    Get PDF
    Adhesion testing was performed on the firebricks in the flame trench of Launch Complex 39A to determine the strength of the epoxy/firebrick bond to the backing concrete wall. The testing used an Elcometer 110 pneumatic adhesion tensile testing instrument (PATTI)

    Launch Pad Coatings for Smart Corrosion Control

    Get PDF
    Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs

    KSC Launch Pad Flame Trench Environment Assessment

    Get PDF
    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench

    Refractory Materials for Flame Deflector Protection

    Get PDF
    Fondu Fyre (FF) is currently the only refractory material qualified for use in the flame trench at KSC's Shuttle Launch Pads 39A and 3913. However, the material is not used as it was qualified and has undergone increasingly frequent and severe degradation due to the launch blasts. This degradation is costly as well as dangerous for launch infrastructure, crew and vehicle. The launch environment at KSC is unique. The refractory material is subject to the normal seacoast environment, is completely saturated with water before launch, and is subjected to vibrations and aggressive heat/blast conditions during launch. This report presents results comparing two alternate materials, Ultra-Tek FS gun mix and Kruzite GR Plus, with Fondu Fyre. The materials were subjected to bulk density, porosity, compression strength, modulus of rupture and thermal shock tests. In addition, test specimens were exposed to conditions meant to simulate the launch environment at KSC to help better understand how the materials will perform once installed

    Launch Pad Flame Trench Refractory Materials

    Get PDF
    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of failure mechanisms, load response, ejected material impact evaluation, and repair design analysis (environmental and structural assessment, induced environment from solid rocket booster plume, loads summary, and repair integrity), assessment of risk posture for flame trench debris, and justification of flight readiness rationale. Although the configuration of the launch pad, water and exhaust direction, and location of the Mobile Launcher Platform between the flame trench and the flight hardware should protect the Space Vehicle from debris exposure, loss of material could cause damage to a major element of the ground facility (resulting in temporary usage loss); and damage to other facility elements is possible. These are all significant risks that will impact ground operations for Constellation and development of new refractory material systems is necessary to reduce the likelihood of the foreign object debris hazard during launch. KSC is developing an alternate refractory material for the launch pad flame trench protection system, including flame deflector and flame trench walls, that will withstand launch conditions without the need for repair after every launch, as is currently the case. This paper will present a summary of the results from industry surveys, trade studies, life cycle cost analysis, and preliminary testing that have been performed to support and validate the development, testing, and qualification of new refractory materials
    • …
    corecore