National Aeronautics and Space Administration



## The Vital Role of the Kennedy Space Center Beachside Atmospheric Corrosion Test Site in Selecting Corrosion Protection Coatings for Increased Sustainability

Jerome P. Curran

## Corrosion Technology Laboratory NASA, Kennedy Space Center

2014 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ALTERNATIVE ENERGY "Increasing Space Mission Resiliency through Sustainability" October 21-24, 2014 Kennedy Space Center, FL, USA

## **Overview**

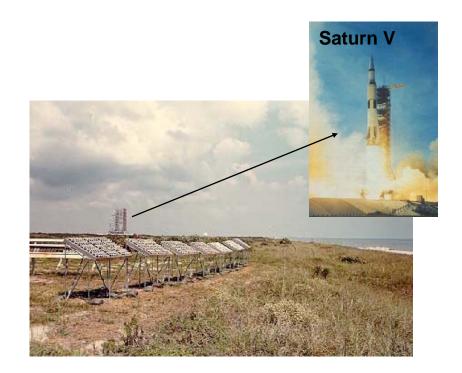


History of the Exposure Site Environmental Conditions Projects and Partnerships



National Aeronautics and \* Space Administration John F. Kennedy Space Center

Corrosion Technology Laboratory Beach Site Corrosion Testing Facility


Authorized Personnel Only



## History – Site Establishment

- 1966: First coatings testing located at the cape side launch pads during the Gemini/Apollo Programs for long-term protective coatings for atmospheric protection of carbon steel.
- 1969: Beach Corrosion Test Site established with more controlled and cost effective ways to conduct testing on coatings for carbon steel in seacoast launch environment.
- 1981 1986: Coatings resistant to hydrochlroric acid from SRB's for the Space Shuttle Launch Program.

I am putting the original picture of the site here



## History – 1<sup>st</sup> Expansion



- **1990's**: Environmentally friendlier coatings, zinc-rich primers and inorganic topcoats, silicone ablative coatings
- 1992: Numerous studies at the site required an expansion to 600 feet parallel to the Atlantic Ocean
- Identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad
- Results have helped KSC find new materials and processes that increase the safety and reliability of launch structures and ground support equipment



## **History: Upgrades**

## **Upgrades:**

- •Weather station
- •New permanent building with laboratory and machine shop
- •Remote camera system
- •New testing capabilities

Concrete:

•Test rebar in concrete •Electrically connected



Seawater submersion:

- •Simulates natural tidal conditions
- •Oxygen concentration monitored



Alternating Seawater Spray Test:

•Sprays seawater pumped from the ocean •Frequency programmable







## History: 2<sup>nd</sup> Expansion



- Site expansion as a result of current demand for additional corrosion testing from NASA and external customers
- 900 total feet of exposure space parallel to the Atlantic Ocean
- 200 feet from the mean high tide line
- Accommodates specialty components



# 2<sup>nd</sup> Expansion: Environmental Considerations

### **Tortoise Protection:**

One successfully relocated



#### **Reuse Materials:**

•Reused recycled fines from the Crawlerway rock for the fill and surface of the new section and new driveways

#### Safety:

 Installed a 6-foot wide sidewalk that spans the entire 900 feet to better secure the racks and stands

•Created a more secure environment for worker safety and stability

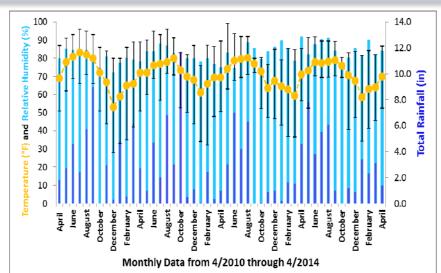


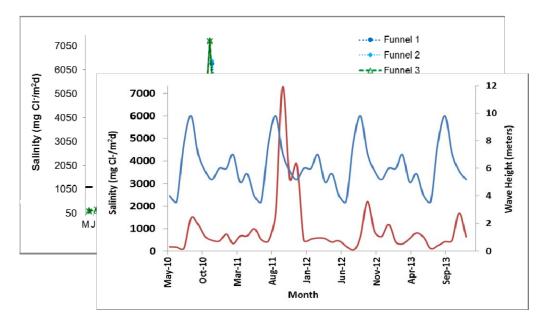
# **KSC Corrosive Environment**



- Natural Environment
  - Ocean salt spray
  - Heat
  - Humidity
  - Sunlight
- In addition, when launching:
  - Acidic exhaust from Solid Rocket Boosters
  - Creates a 70 ton 0.1M HCI vapor cloud during heavy lift vehicle launch
- Atmospheric exposure is time consuming, but the gold standard in lifetime prediction.
- Thus far, no accelerated test method can satisfactorily correlate to atmospheric exposure.



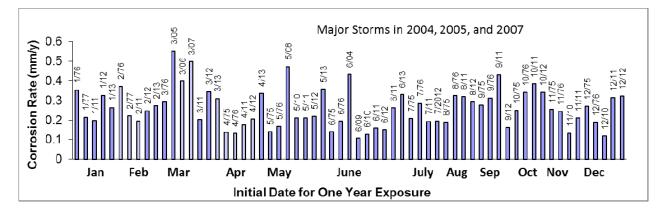

# **Monitoring Natural Conditions**

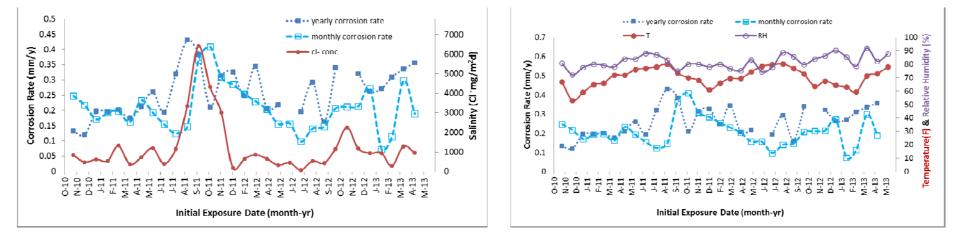



- Temperature
  - Ambient
  - Panel-specific
- Relative humidity
- Precipitation



- Sulfur deposition
  - NADP FL99
  - 1-2 mg/m<sup>2</sup>-d (very low)
- Wave height
  - NOAA buoy #41009
  - Average over 10 years




# **Monitoring Natural Conditions**



- Corrosion Rate
  - Weight loss with carbon steel coupons
  - Ranges from 0.127 0.51mm/y
  - Rates vary seasonally and as a function of chloride/precipitation





## **Collaborations and Partnerships**



- Wide range of organizations
  - Government
  - Military
  - International
  - Industry
  - University
  - Consortium

- Wide range of focus
  - Environmental
  - Aerospace
  - Aviation
  - Energy
  - Coatings
  - Metals
  - Ceramics
  - Polymers
  - Composites
  - Transportation

## **Collaborations and Partnerships**



- US Government
  - DoD
    - Army
    - NAVAIR
    - NAVY
    - Marines
    - AFSC
    - Air Force
  - DOT
  - NIST
  - NOAA

- Industry
  - Automobile manufacturers
  - Industrial coatings manufacturers
  - Aeospace
    - Commercial
    - OEM
    - Business
  - Metal manufacturers
  - Solar panel manufacturers

- International
  - ESA
  - Canadian Govt
  - University (US and International)
  - Coatings manufacturers
  - REACH

- Path Forward
  - Support the 21<sup>st</sup> Century Launch Complex program and Commercial Orbital Transport Services
  - Continue efforts of REACH

## Projects: late 90's - Present NASA-only Projects



- All exterior coatings used at NASA's Kennedy Space Center are tested at the site
- In addition to corrosion protective coatings, items such as metal test panels, launch vehicle components, heat shields, radar support structures, and window frames are tested at the site for corrosion resistance
  - Corrosion Resistant Tubing for Space Shuttle Launch Sites
  - Chloride Rinse Additive Study
  - Electrochemical Evaluation of Alloys for Spaceport Design
  - Multisensor for Corrosion Prediction
  - Nanoscale Admixtures to Prevent the Corrosion of Rebar in Concrete
  - Corrosion Testing of Airplane Wing Structures
  - Liquid Applied Coatings for Imbedded Rebar
  - NASA (UB) Two Hour Salt Spray Exposure of Strike Plate (Internal Angular) Part No. 1110ND051
  - VAB Roof Remediation Support
  - Hex Chrome Alternative Coating Testing
  - VAB Siding Coatings Testing
  - LC-39 Cryogenic Storage Tank Corrosion Control and Mitigation
  - Coatings Support for Exploration and Spaceport Design
  - Laser Depainting Study
  - Launch Coating Operations Support (NASA and CCAFS)
  - Self Cleaning Coatings
  - AR7 Coating Replacement
  - Polyimide Based Powder Coatings
  - In-Situ Phosphatization for KSC Coatings and Corrosion Preventative Compounds

- TEERM and AFSPC Program Support
- Smart Coating Project
- Sintering Methods for Building a Lunar Launch Pad
- Environmentally Friendly Coating Technologies
- Low Volatile Organic Low Volatile Organic Compound (VOC) Topcoats for Thermal Spray Coatings
- AR-7 Replacement
- Refractory Materials Development, Test and Analysis Support
- Continuous Flow Sintering System for Lunar Surface
  Stabilization
- New Organic Zinc Rich Primer for Launch Structures
- Hexavalent Chrome Alternatives for Aerospace
- Demonstration/Validation of Environmentally-preferable Coatings for Launch Facilities
- GSDO Program Hexavalent Chrome Alternatives
- Environmentally Friendly Corrosion Preventative Compounds
- New Accelerated Test Method for Corrosion Protective Coatings
- Implementation of environmentally friendly corrosion preventative compounds into KSC ground processing use
- Environmentally friendly post treatment/coating extender for improved asset sustainability for CPCs

### Projects: late 90's - Present Partnerships or Outside Customers:



#### Projects are part of collaborations or directly-contracted work

- Naval Research Laboratory Support
- Army Research Lab/CTC Coupon Project
- Electrochemical Evaluation of Coatings (Private company)
- Effects of Chlorine Dioxide on Metals (Private company)
- Corrosion Resistance of Friction Stirred Welded Stainless Steel (Naval Research and Lehigh University)
- Powder Coating Evaluation (Private company)
- DoD Cost of Corrosion Study
- Naval Facility Support
- Rebar Corrosion (Private company)
- Fluorescing Coating Study (Private company)
- Weapons Group Coating Study (Private company)
- Chromate Coating Replacement for Aircraft Alloys
  (NAVAIR)
- Boeing (UB) Evaluation of Corrosion Mitigation Techniques for Flight and other Critical Hardware using Citric Acid Passivation and Perfluorinated Polyether Grease
- Depainting Technology for Structural Steel (AFSPC and NASA)
- Polyurethane Replacement Coatings (AFSPC and NASA)
- NASA AP2 Program Support (NASA and US Air Force)
- Evaluation of USMC Hatch Covers

- US Army Vehicle Coating Study
- NAVAIR Support for Non-Chrome Coatings
- NAVAIR / China Lake
- Army Research Laboratory Coatings and Corrosion Research
- Validation of Citric Acid as an Alternative to Nitric Acid for Passivation of Stainless Steel (NASA and DoD)
- U.S. Army Research Laboratory Coastal Atmospheric Exposure of Army Research Laboratory (ARL) Coated Panels
- U.S. Army Research Laboratory Transparent Armor
- Gulfstream Jet Corrosion Study
- NTPEP Panel Exposure
- Solar Panel Evaluation
- Launch Coatings, Phase 2 for AFSPC
- Lockheed Martin Aeronautics Coating Study
- Paint Manufacturer Based Non-Chrome Coating Study
- AFSPC Launch Coating Support- Eastern Range Coatings
- Magnesium Coating Study

## Summary

- NASA Beachside Atmospheric Exposure Test Site has evolved into a world-class test facility
- Dynamic capabilities and personnel to accommodate the changing needs of a multitude of users



# Acknowledgements