9 research outputs found

    A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4 + T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients

    Get PDF
    Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence

    Differential body composition effects of protease inhibitors recommended for initial treatment of HIV infection: A randomized clinical trial

    Full text link
    This article has been accepted for publication in Clinical Infectious Diseases ©2014 The Authors .Published by Oxford University Press on Clinical Infectious Disease 60.5. DOI: 10.1093/cid/ciu898Background. It is unclear whether metabolic or body composition effects may differ between protease inhibitor-based regimens recommended for initial treatment of HIV infection. Methods. ATADAR is a phase IV, open-label, multicenter randomized clinical trial. Stable antiretroviral-naive HIV-infected adults were randomly assigned to atazanavir/ritonavir 300/100 mg or darunavir/ritonavir 800/100 mg in combination with tenofovir/emtricitabine daily. Pre-defined end-points were treatment or virological failure, drug discontinuation due to adverse effects, and laboratory and body composition changes at 96 weeks. Results. At 96 weeks, 56 (62%) atazanavir/ritonavir and 62 (71%) darunavir/ritonavir patients remained free of treatment failure (estimated difference 8.2%; 95%CI -0.6 to 21.6); and 71 (79%) atazanavir/ritonavir and 75 (85%) darunavir/ritonavir patients remained free of virological failure (estimated difference 6.3%; 95%CI -0.5 to 17.6). Seven vs. five patients discontinued atazanavir/ritonavir or darunavir/ritonavir due to adverse effects. Total and HDL cholesterol similarly increased in both arms, but triglycerides increased more in atazanavir/ritonavir arm. At 96 weeks, body fat (estimated difference 2862.2 gr; 95%CI 726.7 to 4997.7; P=0.0090), limb fat (estimated difference 1403.3 gr; 95%CI 388.4 to 2418.2; P=0.0071), and subcutaneous abdominal adipose tissue (estimated difference 28.4 cm2; 95%CI 1.9 to 55.0; P=0.0362) increased more in atazanavir/ritonavir than in darunavir/ritonavir arm. Body fat changes in atazanavir/ritonavir arm were associated with higher insulin resistance. Conclusions. We found no major differences between atazanavir/ritonavir and darunavir/ritonavir in efficacy, clinically-relevant side effects, or plasma cholesterol fractions. However, atazanavir/ritonavir led to higher triglycerides and total and subcutaneous fat than darunavir/ritonavir and fat gains with atazanavir/ritonavir were associated with insulin resistanceThis is an Investigator Sponsored Research study. It was supported in part by research grants from Bristol‐Myers Squibb and Janssen‐Cilag; Instituto de Salud Carlos III (PI12/01217) and Red Temática Cooperativa de Investigación en SIDA G03/173 (RIS‐EST11), Ministerio de Ciencia e Innovación, Spain. (Registration number: NCT01274780; registry name: ATADAR; EUDRACT; 2010‐021002‐38)

    Effectiveness and safety of integrase strand transfer inhibitors in Spain: a prospective real-world study

    Get PDF
    IntroductionSecond-generation integrase strand transfer inhibitors (INSTIs) are preferred treatment options worldwide, and dolutegravir (DTG) is the treatment of choice in resource-limited settings. Nevertheless, in some resource-limited settings, these drugs are not always available. An analysis of the experience with the use of INSTIs in unselected adults living with HIV may be of help to make therapeutic decisions when second-generation INSTIs are not available. This study aimed to evaluate the real-life effectiveness and safety of dolutegravir (DTG), elvitegravir/cobicistat (EVG/c), and raltegravir (RAL) in a large Spanish cohort of HIV-1-infected patients.MethodsReal-world study of adults living with HIV who initiated integrase INSTIs DTG, EVG/c, and RAL-based regimens in three settings (ART-naïve patients, ART-switching, and ART-salvage patients). The primary endpoint was the median time to treatment discontinuation after INSTI-based regimen initiation. Proportion of patients experiencing virological failure (VF) (defined as two consecutive viral loads (VL) ≥200 copies/mL at 24 weeks or as a single determination of VL ≥1,000 copies/mL while receiving DTG, EVG/c or RAL, and at least 3 months after INSTI initiation) and time to VF were also evaluated.ResultsVirological effectiveness of EVG/c- and RAL-based regimens was similar to that of DTG when given as first-line and salvage therapy. Treatment switching for reasons other than virological failure was more frequent in subjects receiving EVG/c and, in particular, RAL. Naïve patients with CD4+ nadir <100 cells/μL were more likely to develop VF, particularly if they initiated RAL or EVG/c. In the ART switching population, initiation of RAL and EVG/c was associated with both VF and INSTI discontinuation. There were no differences in the time to VF and INSTI discontinuation between DTG, EVG/c and RAL. Immunological parameters improved in the three groups and for the three drugs assessed. Safety and tolerability were consistent with expected safety profiles.DiscussionWhereas second-generation INSTIs are preferred treatment options worldwide, and DTG is one of the treatment of choices in resource-limited settings, first-generation INSTIs may still provide high virological and immunological effectiveness when DTG is not available

    Virological efficacy in cerebrospinal fluid and neurocognitive status in patients with long-term monotherapy based on lopinavir/ritonavir: an exploratory study.

    Get PDF
    Data on suppression of HIV replication in the CNS and on the subsequent risk of neurocognitive impairment using monotherapy with boosted protease inhibitors are limited.Ours was an exploratory cross-sectional study in patients on lopinavir/ritonavir-based monotherapy (LPV/r-MT) or standard triple therapy (LPV/r-ART) for at least 96 weeks who maintained a plasma viral load <50 copies/mL. HIV-1 RNA in CSF was determined by HIV-1 SuperLow assay (lower limit of detection, 1 copy/mL). Neurocognitive functioning was assessed using a recommended battery of neuropsychological tests covering 7 areas. Neurocognitive impairment (NCI) was determined and also a global deficit score (GDS) for study comparisons.Seventeen patients on LPV/r-MT and 17 on LPV/r-ART were included. Fourteen (82.4%) patients on LPV/r-MT and 16 (94.1%) on LPV/r-ART had HIV-1 RNA <1 copy/mL in CSF (p = 0.601). NCI was observed in 7 patients on LPV/r-MT and in 10 on LPV/r-ART (41% vs 59%; p = 0.494). Mean (SD) GDS was 0.22 (0.20) in patients on LPV/r-MT and 0.47 (0.34) in those on LPV/r-ART (p = 0.012).Suppression of HIV in CSF is similar in individuals with durable plasma HIV-1 RNA suppression who are receiving LPV/r-MT or LPV/r-ART for at least 96 weeks. Findings for HIV-1 replication in CSF and neurocognitive status indicate that this strategy seems to be safe for CNS functioning

    A Novel Single-Cell FISH-Flow Assay Identifies Effector Memory CD4 + T cells as a Major Niche for HIV-1 Transcription in HIV-Infected Patients

    No full text
    Cells that actively transcribe HIV-1 have been defined as the "active viral reservoir" in HIV-infected individuals. However, important technical limitations have precluded the characterization of this specific viral reservoir during both treated and untreated HIV-1 infections. Here, we used a novel single-cell RNA fluorescence in situ hybridization-flow cytometry (FISH-flow) assay that requires only 15 million unfractionated peripheral blood mononuclear cells (PBMCs) to characterize the specific cell subpopulations that transcribe HIV RNA in different subsets of CD4 + T cells. In samples from treated and untreated HIV-infected patients, effector memory CD4 + T cells were the main cell population supporting HIV RNA transcription. The number of cells expressing HIV correlated with the plasma viral load, intracellular HIV RNA, and proviral DNA quantified by conventional methods and inversely correlated with the CD4 + T cell count and the CD4/CD8 ratio. We also found that after ex vivo infection of unstimulated PBMCs, HIV-infected T cells upregulated the expression of CD32. In addition, this new methodology detected increased numbers of primary cells expressing viral transcripts and proteins after ex vivo viral reactivation with latency reversal agents. This RNA FISH-flow technique allows the identification of the specific cell subpopulations that support viral transcription in HIV-1-infected individuals and has the potential to provide important information on the mechanisms of viral pathogenesis, HIV persistence, and viral reactivation. Persons infected with HIV-1 contain several cellular viral reservoirs that preclude the complete eradication of the viral infection. Using a novel methodology, we identified effector memory CD4 + T cells, immune cells preferentially located in inflamed tissues with potent activity against pathogens, as the main cells encompassing the transcriptionally active HIV-1 reservoir in patients on antiretroviral therapy. Importantly, the identification of such cells provides us with an important target for new therapies designed to target the hidden virus and thus to eliminate the virus from the human body. In addition, because of its ability to identify cells forming part of the viral reservoir, the assay used in this study represents an important new tool in the field of HIV pathogenesis and viral persistence

    Demographic and clinical characteristics<sup>a</sup>.

    No full text
    a<p>Values are expressed as No. (%) or median (interquartile range).</p>b<p>Standardized T scores based on normative data.</p>c<p>Previous or current disease involving the CNS, psychiatric disorder, psychopharmacologic treatment, and drug use.</p><p>Abbreviations: MSM, men who have sex with men; CDC, Centers for Disease Control and Prevention; ARV, antiretroviral; PIs, protease inhibitors; NRTIs, nucleoside reverse transcriptase inhibitors; NNRTIs, nonnucleoside reverse transcriptase inhibitors; LPV/r, lopinavir/ritonavir; LPV/r-MT, lopinavir/ritonavir monotherapy; LPV/r-ART, lopinavir/ritonavir triple-therapy; TDF, tenofovir; FTC, emtricitabine; ABC, abacavir, 3TC, lamivudine; AZT, zidovudine; ddI, didanosine; VL, viral load; WAIS-III, Wechsler Adult Intelligence Scale-III; Beck Depression Inventory; STAI, State-Trait Anxiety Inventory.</p

    Differential Body Composition Effects of Protease Inhibitors Recommended for Initial Treatment of HIV Infection: A Randomized Clinical Trial

    No full text
    corecore