3 research outputs found

    The ecological role of permanent ponds in Europe ::a review of dietary linkages to terrestrial ecosystems via emerging insects

    No full text
    Permanent ponds are valuable freshwater systems and biodiversity hotspots. They provide diverse ecosystem services (ES), including water quality improvement and supply, food provisioning and biodiversity support. This is despite being under significant pressure from multiple anthropogenic stressors and the impacts of ongoing global change. However, ponds are largely overlooked in management plans and legislation, and ecological research has focused on large freshwater ecosystems, such as rivers or lakes. Protection of ponds is often insufficient or indirectly provided via associated habitats such as wetlands. This phenomenon is likely exacerbated due to lacking a full-scale understanding of the importance of ponds. In this review, we provided a detailed overview of permanent ponds across Europe, including their usages and the biodiversity they support. By discussing the concepts of pondscape and metacommunity theory, we highlighted the importance of connectivity among and between ponds and identified fluxes of emerging insects as another ES of ponds. Those insects are rich in essential nutrients such as polyunsaturated fatty acids (PUFA), which are delivered through them to the terrestrial environment, however the extent and impact of this ES remains largely unexplored. Several potential stressors, especially related to ongoing global change, which influence pond diversity and integrity were discussed. To conclude this review, we provided our insights on future pond management. Adaptive measures, taking into account the pond system per se within the pondscape, were found to be the most promising to mitigate the loss of natural ponds and restore and conserve natural small water bodies as refuges and diversity hotspots in increasingly urbanized landscapes

    The ecological role of permanent ponds in Europe: a review of dietary linkages to terrestrial ecosystems via emerging insects

    No full text
    Permanent ponds are valuable freshwater systems and biodiversity hotspots. They provide diverse ecosystem services (ES), including water quality improvement and supply, food provisioning and biodiversity support. This is despite being under significant pressure from multiple anthropogenic stressors and the impacts of ongoing global change. However, ponds are largely overlooked in management plans and legislation, and ecological research has focused on large freshwater ecosystems, such as rivers or lakes. Protection of ponds is often insufficient or indirectly provided via associated habitats such as wetlands. This phenomenon is likely exacerbated due to lacking a full-scale understanding of the importance of ponds. In this review, we provided a detailed overview of permanent ponds across Europe, including their usages and the biodiversity they support. By discussing the concepts of pondscape and metacommunity theory, we highlighted the importance of connectivity among and between ponds and identified fluxes of emerging insects as another ES of ponds. Those insects are rich in essential nutrients such as polyunsaturated fatty acids (PUFA), which are delivered through them to the terrestrial environment, however the extent and impact of this ES remains largely unexplored. Several potential stressors, especially related to ongoing global change, which influence pond diversity and integrity were discussed. To conclude this review, we provided our insights on future pond management. Adaptive measures, taking into account the pond system per se within the pondscape, were found to be the most promising to mitigate the loss of natural ponds and restore and conserve natural small water bodies as refuges and diversity hotspots in increasingly urbanized landscapes

    Impacts of diffuse urban stressors on stream benthic communities and ecosystem functioning: A review

    Get PDF
    Catchment urbanisation results in urban streams being exposed to a multitude of stressors. Notably, stressors originating from diffuse sources have received less attention than stressors originating from point sources. Here, advances related to diffuse urban stressors and their consequences for stream benthic communities are summarised by reviewing 92 articles. Based on the search criteria, the number of articles dealing with diffuse urban stressors in streams has been increasing, and most of them focused on North America, Europe, and China. Land use was the most common measure used to characterize diffuse stressor sources in urban streams (70.7 % of the articles characterised land use), and chemical stressors (inorganic nutrients, xenobiotics, metals, and water properties, including pH and conductivity) were more frequently reported than physical or biological stressors. A total of 53.3 % of the articles addressed the impact of urban stressors on macroinvertebrates, while 35.9 % focused on bacteria, 9.8 % on fungi, and 8.7 % on algae. Regarding ecosystem functions, almost half of the articles (43.5 %) addressed changes in community dynamics, 40.3 % addressed organic matter decomposition, and 33.9 % addressed nutrient cycling. When comparing urban and non-urban streams, the reviewed studies suggest that urbanisation negatively impacts the diversity of benthic organisms, leading to shifts in community composition. These changes imply functional degradation of streams. The results of the present review summarise the knowledge gained to date and identify its main gaps to help improve our understanding of urban streams.This study has received funding from the Iberian Association of Limnology (AIL) through the project URBIFUN (Urbanization effects on the relationship between microbial biodiversity and ecosystem functioning), awarded to Míriam Colls and Ferran Romero. Authors thank as well the Basque Government (Consolidated Research Group IT951-16) and the MERLIN project 101036337 – H2020-LC-GD-2020/H2020-LC-GD-2020-3.info:eu-repo/semantics/publishedVersio
    corecore