1,249 research outputs found

    Statistical and Probabilistic Extensions to Ground Operations' Discrete Event Simulation Modeling

    Get PDF
    NASA's human exploration initiatives will invest in technologies, public/private partnerships, and infrastructure, paving the way for the expansion of human civilization into the solar system and beyond. As it is has been for the past half century, the Kennedy Space Center will be the embarkation point for humankind's journey into the cosmos. Functioning as a next generation space launch complex, Kennedy's launch pads, integration facilities, processing areas, launch and recovery ranges will bustle with the activities of the world's space transportation providers. In developing this complex, KSC teams work through the potential operational scenarios: conducting trade studies, planning and budgeting for expensive and limited resources, and simulating alternative operational schemes. Numerous tools, among them discrete event simulation (DES), were matured during the Constellation Program to conduct such analyses with the purpose of optimizing the launch complex for maximum efficiency, safety, and flexibility while minimizing life cycle costs. Discrete event simulation is a computer-based modeling technique for complex and dynamic systems where the state of the system changes at discrete points in time and whose inputs may include random variables. DES is used to assess timelines and throughput, and to support operability studies and contingency analyses. It is applicable to any space launch campaign and informs decision-makers of the effects of varying numbers of expensive resources and the impact of off nominal scenarios on measures of performance. In order to develop representative DES models, methods were adopted, exploited, or created to extend traditional uses of DES. The Delphi method was adopted and utilized for task duration estimation. DES software was exploited for probabilistic event variation. A roll-up process was used, which was developed to reuse models and model elements in other less - detailed models. The DES team continues to innovate and expand DES capabilities to address KSC's planning needs

    Patterns and predictors of smoking by race and medical diagnosis during hospital admission: A latent class analysis

    Get PDF
    Hospital-based tobacco treatment programs provide tobacco cessation for a diverse array of admitted patients. Person-centered approaches to classifying subgroups of individuals within large datasets are useful for evaluating the characteristics of the sample. This study categorized patients who received tobacco treatment while hospitalized and determined whether demographics and smoking-related health conditions were associated with group membership. Chart review data was obtained from 4854 patients admitted to a large hospital in South Carolina, USA, from July 2014 through December 2019 who completed a tobacco treatment visit. Smoking characteristics obtained from the visit interview were dichotomized, and then latent class analysis (LCA) was conducted to categorize patients based on smoking history and interest in stopping smoking. Finally, logistic regressions were used to evaluate demographics and smoking-related health conditions as predictors of class membership. LCA generated 5 classes of patients, differentiated by heaviness of smoking and motivation to quit. Patients who were black/African American were more likely to be lighter smokers compared to white patients. Hospitalized patients with a history of hypertension, diabetes, and congestive heart failure were more likely to be motivated to quit and also were more likely to be lighter smokers at the time of hospitalization. Hospitalized patients who smoke and receive tobacco treatment are heterogeneous in terms of their smoking histories and motivation to quit. Understanding latent categories of patients provides insight for tailoring interventions and potentially improving tobacco treatment outcomes

    Functional Brain Imaging Predicts Public Health Campaign Success

    Get PDF
    Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a ‘self-localizer’ defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400 000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R2 up to 0.65) and (ii) this relationship depends on message content—self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns

    Multidisciplinary Applications of Detached-Eddy Simulation to Separated Flows at High Reynolds Numbers

    Get PDF
    We focus on multidisciplinary applications of detached-eddy simulation (DES), principally flight mechanics and aeroelasticity. Specifically, the lateral instability (known as abrupt wing stall) of the preproduction F/A-18E is reproduced using DES, including the unsteady shock motion. The presence of low frequency pressure oscillations due to shock motion in the current simulations and the experiments motivated a full aircraft calculation, which showed low frequency high-magnitude rolling moments that could be a significant contributor to the abrupt wing stall phenomenon. DES is also applied to the F-18 high angle of attack research vehicle (HARV) at a moderate angle of attack to reproduce the vortex breakdown leading to vertical stabilizer buffet. Unsteady tail loads are compared to flight test data. This work lays the foundation for future deforming grid calculations to reproduce the aero-elastic tail buffet seen in flight test. Solution based grid adaption is used on unstructured grids in both cases to improve the resolution in the separated region. Previous DoD Challenge work has demonstrated the unique ability of the DES turbulence treatment to accurately and efficiently predict flows with massive separation at flight Reynolds numbers. DES calculations have been performed using the Cobalt code and on unstructured grids, an approach that can deal with complete configurations with very few compromises. A broad range of flows has been examined in previous Challenge work, including aircraft forebodies, airfoil sections, a missile afterbody, vortex breakdown on a delta wing, and the F-16 and F-15E at high angles-of-attack. All DES predictions exhibited a moderate to significant improvement over results obtained using traditional Reynolds-averaged models and often excellent agreement with experimental/flight-test data. DES combines the efficiency of a Reynolds-averaged turbulence model near the wall with the fidelity of Large-Eddy Simulation (LES) in separated regions. Since it uses Large-Eddy Simulation in the separated regions, it is capable of predicting the unsteady motions associated with separated flows. The development and demonstration of improved methods for the prediction of flight mechanics and aeroelasticity in this Challenge is expected to reduce the acquisition cost of future military aircraft

    Wet scavenging of soluble gases in DC3 deep convective storms using WRF-Chem simulations and aircraft observations

    Get PDF
    We examine wet scavenging of soluble trace gases in storms observed during the Deep Convective Clouds and Chemistry (DC3) field campaign. We conduct high-resolution simulations with the Weather Research and Forecasting model with Chemistry (WRF-Chem) of a severe storm in Oklahoma. The model represents well the storm location, size, and structure as compared with Next Generation Weather Radar reflectivity, and simulated CO transport is consistent with aircraft observations. Scavenging efficiencies (SEs) between inflow and outflow of soluble species are calculated from aircraft measurements and model simulations. Using a simple wet scavenging scheme, we simulate the SE of each soluble species within the error bars of the observations. The simulated SEs of all species except nitric acid (HNO_3) are highly sensitive to the values specified for the fractions retained in ice when cloud water freezes. To reproduce the observations, we must assume zero ice retention for formaldehyde (CH_2O) and hydrogen peroxide (H_2O_2) and complete retention for methyl hydrogen peroxide (CH_3OOH) and sulfur dioxide (SO_2), likely to compensate for the lack of aqueous chemistry in the model. We then compare scavenging efficiencies among storms that formed in Alabama and northeast Colorado and the Oklahoma storm. Significant differences in SEs are seen among storms and species. More scavenging of HNO_3 and less removal of CH_3OOH are seen in storms with higher maximum flash rates, an indication of more graupel mass. Graupel is associated with mixed-phase scavenging and lightning production of nitrogen oxides (NO_x), processes that may explain the observed differences in HNO_3 and CH_3OOH scavenging

    Effects of Scavenging, Entrainment, and Aqueous Chemistry on Peroxides and Formaldehyde in Deep Convective Outflow over the Central and Southeast U.S.

    Get PDF
    Deep convective transport of gaseous precursors to ozone (O3) and aerosols to the upper troposphere is affected by liquid- and mixed-phase scavenging, entrainment of free tropospheric air, and aqueous chemistry. The contributions of these processes are examined using aircraft measurements obtained in storm inflow and outflow during the 2012 Deep Convective Clouds and Chemistry (DC3) experiment combined with high resolution (dx <= 3 km) WRF-Chem simulations of a severe storm, an airmass storm, and a mesoscale convective system (MCS). The simulation results for the MCS suggest that formaldehyde (CH2O) is not retained in ice when cloud water freezes, in agreement with previous studies of the severe storm. By analyzing WRF-Chem trajectories, the effects of scavenging, entrainment, and aqueous chemistry on outflow mixing ratios of CH2O, methyl hydroperoxide (CH3OOH), and hydrogen peroxide (H2O2) are quantified. Liquid-phase microphysical scavenging was the dominant process reducing CH2O and H2O2 outflow mixing ratios in all three storms. Aqueous chemistry did not significantly affect outflow mixing ratios of all three species. In the severe storm and MCS, the higher than expected reductions in CH3OOH mixing ratios in the storm cores were primarily due to entrainment of low background CH3OOH. In the airmass storm, lower CH3OOH and H2O2 scavenging efficiencies (SEs) than in the MCS were partly due to entrainment of higher background CH3OOH and H2O2. Overestimated rain and hail production in WRF-Chem reduces the confidence in ice retention fraction values determined for the peroxides and CH2O

    cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Get PDF
    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites

    Community syndicalism for the United States: preliminary observations on law and globalization in democratic production

    Get PDF
    two structural labor crises for developed economies: 1) The channeling of substantial investment into non-productive, paper commodities, reducing growth of production for use and therefore reducing available aggregate job creation; and 2) The continued exportation of industrial jobs to other lower cost jurisdictions, and outsourcing, automation, just-in-time production, and speed-ups associated with global supply chains. As a result, local communities and regional populations have destabilized and even collapsed with attendant social problems. One possible response is Community Syndicalism – local community finance and operating credit for industrial production combined with democratic worker ownership and control of production. The result would increase investment directly for production, retain jobs in existing population centers, promote job skilling, and retain tax bases for local services and income supporting local businesses, at the same time increasing support for authentic political democracy by rendering the exploitive ideology of the Public/Private distinction superfluous. Slowing job exportation may reduce the global race to the bottom of labor standards and differential wage rates reducing the return to producers of value and increasing the skew of income distribution undermining social wages and welfare worldwide. Community Syndicalism can serve as moral goal in an alternative production model focusing incentives on long term stability of jobs and community economic base

    Common variants in the CRP gene in relation to longevity and cause-specific mortality in older adults: The Cardiovascular Health Study

    Get PDF
    Common polymorphisms in the CRP gene are associated with plasma CRP levels in population-based studies, but associations with age-related events are uncertain. A previous study of CRP haplotypes in older adults was broadened to include longevity and cause-specific mortality (all-cause, non-cardiovascular (nonCV), and cardiovascular (CV)). Common haplotypes were inferred from four tagSNPs in 4512 whites and five tagSNPs in 812 blacks from the Cardiovascular Health Study, a longitudinal cohort of adults over age 65. Exploratory analyses addressed early versus late mortality. CRP haplotypes were not associated with all-cause mortality or longevity overall in either population, but associations with all-cause mortality differed during early and late periods. In blacks, the haplotype tagged by 3872A (rs1205) was associated with increased risk of nonCV mortality, relative to other haplotypes (adjusted hazard ratio for each additional copy: 1.42, 95% CI: 1.07, 1.87). Relative to other haplotypes, this haplotype was associated with decreased risk of early but not decreased risk of late CV mortality in blacks; among whites, a haplotype tagged by 2667C (rs1800947) gave similar but nonsignificant findings. If confirmed, CRP genetic variants may be weakly associated with CV and nonCV mortality in older adults, particularly in self-identified blacks
    • …
    corecore