8 research outputs found

    Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation

    Get PDF
    Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression

    Crosstalk between AML and stromal cells triggers acetate secretion through the metabolic rewiring of stromal cells

    Get PDF
    Acute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored. By using a combination of human AML cell lines and AML patient samples together with mouse stromal cells and a MLL-AF9 mouse model, here we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption to feed the tricarboxylic acid cycle (TCA) and lipid biosynthesis. By performing transcriptome analysis and tracer-based metabolic NMR analysis, we observe that stromal cells present a higher rate of glycolysis when co-cultured with AML cells. We also find that acetate in stromal cells is derived from pyruvate via chemical conversion under the influence of reactive oxygen species (ROS) following ROS transfer from AML to stromal cells via gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells and propose two different molecular targets, ACSS2 and gap junctions, that could potentially be exploited for adjuvant therapy

    Endogenous IL-1 receptor antagonist restricts healthy and malignant myeloproliferation.

    Get PDF
    Here we explored the role of interleukin-1β (IL-1β) repressor cytokine, IL-1 receptor antagonist (IL-1rn), in both healthy and abnormal hematopoiesis. Low IL-1RN is frequent in acute myeloid leukemia (AML) patients and represents a prognostic marker of reduced survival. Treatments with IL-1RN and the IL-1β monoclonal antibody canakinumab reduce the expansion of leukemic cells, including CD34+ progenitors, in AML xenografts. In vivo deletion of IL-1rn induces hematopoietic stem cell (HSC) differentiation into the myeloid lineage and hampers B cell development via transcriptional activation of myeloid differentiation pathways dependent on NFκB. Low IL-1rn is present in an experimental model of pre-leukemic myelopoiesis, and IL-1rn deletion promotes myeloproliferation, which relies on the bone marrow hematopoietic and stromal compartments. Conversely, IL-1rn protects against pre-leukemic myelopoiesis. Our data reveal that HSC differentiation is controlled by balanced IL-1β/IL-1rn levels under steady-state, and that loss of repression of IL-1β signaling may underlie pre-leukemic lesion and AML progression.We thank K. Tasken, J. Saarela and the NCMM at the University of Oslo (UiO), S. Kanse (UiO) and B. Smedsrød (UiT), for access to facilities. We acknowledge Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital (Bergen, Norway) and R. Hovland for karyotyping, FISH, translocation and DNA analyses of AML and MDS patients included in this study, and Department of Pathology, Oslo University Hospital (Oslo, Norway) and S. Spetalen for deep sequencing. L.M. Gonzalez, L.T. Eliassen, X. Zhang, M. Ristic and other members of L. Arranz group, O.P. Rekvig, R. Doohan, L.D. Håland, M.I. Olsen, A. Urbanucci, J. Landskron, K.B. Larsen, R.A. Lyså and UiT Advanced Microscopy Core Facility, UiO and UiT Comparative Medicine Units, for assistance. P. Garcia and S. Mendez-Ferrer for providing NRASG12D and Nes-gfp mice, respectively. P. Garcia and L. Kurian for careful reading of the manuscript. E. Tenstad (Science Shaped) for artwork in schematics. We would also like to thank the AML and MDS patients, and healthy volunteers, who donated biological samples. Our work is supported by a joint meeting grant of the Northern Norway Regional Health Authority, the University Hospital of Northern Norway (UNN) and UiT (Strategisk-HN06-14), Young Research Talent grants from the Research Council of Norway, (Stem Cell Program, 247596; FRIPRO Program, 250901), and grants from the Norwegian Cancer Society (6765150), the Northern Norway Regional Health Authority (HNF1338-17), and the Aakre-Stiftelsen Foundation (2016/9050) to L.A. Vav-Cre NRASG12D experiments were supported by NIH grant R01CA152108 to J.Z.S

    Etude de l'activité hématopoïétique du tissu adipeux chez la souris et l'homme

    Get PDF
    The adipose tissue (AT) contains a lot of leukocytes that play a fundamental role in the regulation of AT metabolic activity. In a physiological situation, AT-leukocytes mostly display an anti-inflammatory profile (M2 macrophages, eosinophils, CD4 Th2 T cells and regulatory T cells). Obesity induces a shift in AT immune cells towards a pro-inflammatory phenotype (M1 macrophages, neutrophils, CD8 and CD4 Th1 T cells). This inflammatory state contributes to the development of the metabolic syndrome. In adults, circulating leukocytes are mostly produced in the bone marrow (BM) by hematopoietic stem cells (HSC). A few years ago, we have shown AT harbors a specific resident HSC population that can renew innate immune cells and especially macrophages in the AT, via in situ differentiation. This endogenous hematopoietic activity differs according to the localization of the fat pad, suggesting that like BM-HSC, AT HSC might be controlled by their environment. Considering the important role of leukocytes in the AT physiopathology and the role of resident HSC in this tissue, the objectives of this work were the followings: 1) To characterize the role of the AT hematopoiesis in the onset of metabolic diseases. 2) To characterize the AT HSC niche from a cellular and a molecular point of view, and the regulation of their activity by this environment. 3) To demonstrate the presence of an endogenous AT-hematopoiesis in humans. First, by using transplantation of sorted AT-HSC and gain and loss of function studies we showed that some of the inflammatory AT-macrophages inducing metabolic disease originate from resident AT-HSC. Transplantation of AT-HSC sorted from high fat diet-fed (HFD) mice is sufficient to induce AT-macrophage accumulation, and to transfer metabolic disease in control mice. Conversely, the transplantation of control AT-HSC improves both AT-inflammation and glucose homeostasis in HFD mice. Second, we showed that AT-HSC are preferentially localized in the core of sub-cutaneous AT that contains beige adipocytes, instead of the periphery that mostly harbors unilocular white adipocytes. Activation or inhibition of beige adipocytes induces a loss of this preferential localization, suggesting that modifications of the subcutaneous AT core region metabolism impact HSC behavior. This suggests that beige adipocytes might be a part of a hematopoietic niche in the AT. However, we were unable to characterize the cellular and/or molecular constituants of this niche. Finally, we showed for the first time that as in mice, human AT contains resident HSC. In methylcellulose semi-solid medium, human AT-HSC are able to produce myeloid clones. In vivo, after transplantation of human AT-HSC in immunodeficient mice, human immune cells are observed in the AT. These results show that human AT exhibit a functional endogenous hematopoietic activity. Altogether, we show in this study that the AT hematopoietic activity plays a crucial role in the control of energy balance. Although AT HSC are localized preferentially at the vicinity of beige adipocytes, molecular signals controlling this population remain to be characterized. Finally, we demonstrate for the first time an endogenous hematopoiesis in human AT, highlighting the physiopathological importance of our previous results obtained in mice.Le tissu adipeux (TA) contient un grand nombre de leucocytes qui jouent un rôle fondamental dans la régulation de l'activité métabolique du TA. Chez l'individu sain, les leucocytes du TA ont un profil majoritairement anti-inflammatoire (macrophages M2, polynucléaires éosinophiles, lymphocytes T CD4 Th2 et T régulateurs). Chez le sujet obèse, on observe une modification des populations immunitaires vers un phénotype majoritairement pro-inflammatoire (macrophages M1, polynucléaires neutrophiles, lymphocytes T CD8 et T CD4 Th1). Cet état inflammatoire participe au développement du syndrome métabolique. Chez l'adulte, les leucocytes circulants sont principalement produits dans la moelle osseuse (MO) par des cellules souches hématopoïétiques (CSH). Notre équipe a montré qu'une partie des leucocytes du TA sont produits in situ grâce à la présence de CSH tissulaires spécifiques, dont l'activité hématopoïétique diffère selon le dépôt adipeux. Ce résultat suggère que les CSH du TA pourraient être contrôlées par leur niche, comme c'est le cas dans la MO. Considérant le rôle prépondérant des leucocytes dans la physiopathologie du TA et le rôle des CSH dans ce tissu, les objectifs de cette thèse ont été les suivants : 1) Caractériser le rôle de l'hématopoïèse du TA dans le développement des maladies métaboliques. 2) Caractériser d'un point de vue cellulaire et moléculaire la niche des CSH du TA et la régulation de leur activité par cet environnement. 3) Mettre en évidence et caractériser l'activité hématopoïétique du TA chez l'homme. Concernant le premier objectif, nos résultats montrent que dans un modèle de diabète induit par un régime riche en gras, les CSH du TA produisent des macrophages pro- inflammatoires ayant un rôle direct dans le développement des altérations de l'homéostasie glucidique. La greffe de CSH du TA issues d'une souris diabétique dans une souris maintenue sous régime standard induit le transfert de la pathologie. Inversement, la greffe de CSH de TA d'une souris saine dans une souris diabétique améliore le phénotype métabolique. Concernant le second objectif, nous montrons que les CSH du TA se localisent préférentiellement dans le cœur du TA sous-cutané, région principalement composée d'adipocytes beiges, alors que la périphérie, constituée d'adipocytes blancs uniloculaires héberge moins de CSH. L'activation ou l'inhibition des adipocytes beiges diminue la quantité de CSH au cœur du tissu, montrant qu'un déséquilibre du métabolisme des adipocytes beiges a un impact sur les CSH, suggérant que ces adipocytes pourraient alors faire partie d'une niche hématopoïétique. Les approches in vitro ne nous ont pas permis d'aller plus loin dans la caractérisation des acteurs cellulaires et/ou moléculaires de cette niche. Concernant le troisième objectif, nous montrons pour la première fois la présence de CSH dans le TA chez l'homme. La fonctionnalité de ces CSH a été testée in vitro et in vivo. En culture en milieu semi-solide, les CSH de TA humain sont capables de donner des clones myéloïdes, comme chez la souris. In vivo, chez des souris immuno-déficientes reconstituées avec des CSH de TA humain, on retrouve des cellules immunitaires humaines dans le tissu adipeux, ce qui démontre leur capacité à reconstituer une partie du système immunitaire de ce tissu. En conclusion, ce travail de thèse a permis de montrer que l'activité hématopoïétique du TA joue un rôle crucial dans le maintien de la balance énergétique. Les CSH du TA résideraient préférentiellement dans une niche localisée au cœur du tissu, composée d'adipocytes beiges. La caractérisation des signaux moléculaires présents dans les différentes zones du TA permettra de proposer de nouvelles hypothèses sur la régulation de l'activité des CSH du TA. Chez l'homme, notre travail a permis de mettre en évidence une hématopoïèse tissulaire endogène au tissu adipeux, renforçant ainsi l'importance physiopathologique de nos précédents résultats obtenus chez la souris

    Studies of adipose tissue hematopoiesis in mice and men

    No full text
    Le tissu adipeux (TA) contient un grand nombre de leucocytes qui jouent un rôle fondamental dans la régulation de l'activité métabolique du TA. Chez l'individu sain, les leucocytes du TA ont un profil majoritairement anti-inflammatoire (macrophages M2, polynucléaires éosinophiles, lymphocytes T CD4 Th2 et T régulateurs). Chez le sujet obèse, on observe une modification des populations immunitaires vers un phénotype majoritairement pro-inflammatoire (macrophages M1, polynucléaires neutrophiles, lymphocytes T CD8 et T CD4 Th1). Cet état inflammatoire participe au développement du syndrome métabolique. Chez l'adulte, les leucocytes circulants sont principalement produits dans la moelle osseuse (MO) par des cellules souches hématopoïétiques (CSH). Notre équipe a montré qu'une partie des leucocytes du TA sont produits in situ grâce à la présence de CSH tissulaires spécifiques, dont l'activité hématopoïétique diffère selon le dépôt adipeux. Ce résultat suggère que les CSH du TA pourraient être contrôlées par leur niche, comme c'est le cas dans la MO. Considérant le rôle prépondérant des leucocytes dans la physiopathologie du TA et le rôle des CSH dans ce tissu, les objectifs de cette thèse ont été les suivants : 1) Caractériser le rôle de l'hématopoïèse du TA dans le développement des maladies métaboliques. 2) Caractériser d'un point de vue cellulaire et moléculaire la niche des CSH du TA et la régulation de leur activité par cet environnement. 3) Mettre en évidence et caractériser l'activité hématopoïétique du TA chez l'homme. Concernant le premier objectif, nos résultats montrent que dans un modèle de diabète induit par un régime riche en gras, les CSH du TA produisent des macrophages pro- inflammatoires ayant un rôle direct dans le développement des altérations de l'homéostasie glucidique. La greffe de CSH du TA issues d'une souris diabétique dans une souris maintenue sous régime standard induit le transfert de la pathologie. Inversement, la greffe de CSH de TA d'une souris saine dans une souris diabétique améliore le phénotype métabolique. Concernant le second objectif, nous montrons que les CSH du TA se localisent préférentiellement dans le cœur du TA sous-cutané, région principalement composée d'adipocytes beiges, alors que la périphérie, constituée d'adipocytes blancs uniloculaires héberge moins de CSH. L'activation ou l'inhibition des adipocytes beiges diminue la quantité de CSH au cœur du tissu, montrant qu'un déséquilibre du métabolisme des adipocytes beiges a un impact sur les CSH, suggérant que ces adipocytes pourraient alors faire partie d'une niche hématopoïétique. Les approches in vitro ne nous ont pas permis d'aller plus loin dans la caractérisation des acteurs cellulaires et/ou moléculaires de cette niche. Concernant le troisième objectif, nous montrons pour la première fois la présence de CSH dans le TA chez l'homme. La fonctionnalité de ces CSH a été testée in vitro et in vivo. En culture en milieu semi-solide, les CSH de TA humain sont capables de donner des clones myéloïdes, comme chez la souris. In vivo, chez des souris immuno-déficientes reconstituées avec des CSH de TA humain, on retrouve des cellules immunitaires humaines dans le tissu adipeux, ce qui démontre leur capacité à reconstituer une partie du système immunitaire de ce tissu. En conclusion, ce travail de thèse a permis de montrer que l'activité hématopoïétique du TA joue un rôle crucial dans le maintien de la balance énergétique. Les CSH du TA résideraient préférentiellement dans une niche localisée au cœur du tissu, composée d'adipocytes beiges. La caractérisation des signaux moléculaires présents dans les différentes zones du TA permettra de proposer de nouvelles hypothèses sur la régulation de l'activité des CSH du TA. Chez l'homme, notre travail a permis de mettre en évidence une hématopoïèse tissulaire endogène au tissu adipeux, renforçant ainsi l'importance physiopathologique de nos précédents résultats obtenus chez la souris.The adipose tissue (AT) contains a lot of leukocytes that play a fundamental role in the regulation of AT metabolic activity. In a physiological situation, AT-leukocytes mostly display an anti-inflammatory profile (M2 macrophages, eosinophils, CD4 Th2 T cells and regulatory T cells). Obesity induces a shift in AT immune cells towards a pro-inflammatory phenotype (M1 macrophages, neutrophils, CD8 and CD4 Th1 T cells). This inflammatory state contributes to the development of the metabolic syndrome. In adults, circulating leukocytes are mostly produced in the bone marrow (BM) by hematopoietic stem cells (HSC). A few years ago, we have shown AT harbors a specific resident HSC population that can renew innate immune cells and especially macrophages in the AT, via in situ differentiation. This endogenous hematopoietic activity differs according to the localization of the fat pad, suggesting that like BM-HSC, AT HSC might be controlled by their environment. Considering the important role of leukocytes in the AT physiopathology and the role of resident HSC in this tissue, the objectives of this work were the followings: 1) To characterize the role of the AT hematopoiesis in the onset of metabolic diseases. 2) To characterize the AT HSC niche from a cellular and a molecular point of view, and the regulation of their activity by this environment. 3) To demonstrate the presence of an endogenous AT-hematopoiesis in humans. First, by using transplantation of sorted AT-HSC and gain and loss of function studies we showed that some of the inflammatory AT-macrophages inducing metabolic disease originate from resident AT-HSC. Transplantation of AT-HSC sorted from high fat diet-fed (HFD) mice is sufficient to induce AT-macrophage accumulation, and to transfer metabolic disease in control mice. Conversely, the transplantation of control AT-HSC improves both AT-inflammation and glucose homeostasis in HFD mice. Second, we showed that AT-HSC are preferentially localized in the core of sub-cutaneous AT that contains beige adipocytes, instead of the periphery that mostly harbors unilocular white adipocytes. Activation or inhibition of beige adipocytes induces a loss of this preferential localization, suggesting that modifications of the subcutaneous AT core region metabolism impact HSC behavior. This suggests that beige adipocytes might be a part of a hematopoietic niche in the AT. However, we were unable to characterize the cellular and/or molecular constituants of this niche. Finally, we showed for the first time that as in mice, human AT contains resident HSC. In methylcellulose semi-solid medium, human AT-HSC are able to produce myeloid clones. In vivo, after transplantation of human AT-HSC in immunodeficient mice, human immune cells are observed in the AT. These results show that human AT exhibit a functional endogenous hematopoietic activity. Altogether, we show in this study that the AT hematopoietic activity plays a crucial role in the control of energy balance. Although AT HSC are localized preferentially at the vicinity of beige adipocytes, molecular signals controlling this population remain to be characterized. Finally, we demonstrate for the first time an endogenous hematopoiesis in human AT, highlighting the physiopathological importance of our previous results obtained in mice

    Leukemia Stem Cell Release From the Stem Cell Niche to Treat Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is a heterogeneous, complex, and deadly disease, whose treatment has hardly evolved for decades and grounds on the use of intensive chemotherapy regimens. Chemotherapy helps reduce AML bulk, but promotes relapse in the long-run by selection of chemoresistant leukemia stem cells (LSC). These may diversify and result in progression to more aggressive forms of AML. In vivo models suggest that the bone marrow stem cell niche helps LSC stay dormant and protected from chemotherapy. Here, we summarize relevant changes in stem cell niche homing and adhesion of AML LSC vs. healthy hematopoietic stem cells, and provide an overview of clinical trials aiming at targeting these processes for AML treatment and future directions within this field. Promising results with various non-mutation-targeted novel therapies directed to LSC eradication via interference with their anchoring to the stem cell niche have encouraged on-going or future advanced phase III clinical trials. In the coming years, we may see a shift in the focus of AML treatment to LSC-directed therapies if the prospect of improved cure rates holds true. In the future, AML treatment should lean toward personalized therapies using combinations of these compounds plus mutation-targeted agents and/or targeted delivery of chemotherapy, aiming at LSC eradication with reduced side effects

    Crosstalk between AML and stromal cells triggers acetate secretion through the metabolic rewiring of stromal cells

    No full text
    Acute myeloid leukaemia (AML) cells interact and modulate components of their surrounding microenvironment into their own benefit. Stromal cells have been shown to support AML survival and progression through various mechanisms. Nonetheless, whether AML cells could establish beneficial metabolic interactions with stromal cells is underexplored. By using a combination of human AML cell lines and AML patient samples together with mouse stromal cells and a MLL-AF9 mouse model, here we identify a novel metabolic crosstalk between AML and stromal cells where AML cells prompt stromal cells to secrete acetate for their own consumption to feed the tricarboxylic acid cycle (TCA) and lipid biosynthesis. By performing transcriptome analysis and tracer-based metabolic NMR analysis, we observe that stromal cells present a higher rate of glycolysis when co-cultured with AML cells. We also find that acetate in stromal cells is derived from pyruvate via chemical conversion under the influence of reactive oxygen species (ROS) following ROS transfer from AML to stromal cells via gap junctions. Overall, we present a unique metabolic communication between AML and stromal cells and propose two different molecular targets, ACSS2 and gap junctions, that could potentially be exploited for adjuvant therapy
    corecore