341 research outputs found

    Fragility and hysteretic creep in frictional granular jamming

    Full text link
    The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bi-dispersed disks subject to quasi-static, uniaxial compression at zero granular temperature. Currently accepted results show the jamming transition occurs at a critical packing fraction ϕc\phi_c. In contrast, we observe the first compression cycle exhibits {\it fragility} - metastable configuration with simultaneous jammed and un-jammed clusters - over a small interval in packing fraction (ϕ1<ϕ<ϕ2\phi_1 < \phi < \phi_2). The fragile state separates the two conditions that define ϕc\phi_c with an exponential rise in pressure starting at ϕ1\phi_1 and an exponential fall in disk displacements ending at ϕ2\phi_2. The results are explained through a percolation mechanism of stressed contacts where cluster growth exhibits strong spatial correlation with disk displacements. Measurements with several disk materials of varying elastic moduli EE and friction coefficients μ\mu, show friction directly controls the start of the fragile state, but indirectly controls the exponential slope. Additionally, we experimentally confirm recent predictions relating the dependence of ϕc\phi_c on μ\mu. Under repetitive loading (compression), the system exhibits hysteresis in pressure, and the onset ϕc\phi_c increases slowly with repetition number. This friction induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend upon the quasi-static step size Δϕ\Delta \phi which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ\mu which acts to stabilize the pack.Comment: 12 pages, 10 figure

    Macroscopic behavior of bidisperse suspensions of noncolloidal particles in yield stress fluids

    Get PDF
    We study both experimentally and theoretically the rheological behavior of isotropic bidisperse suspensions of noncolloidal particles in yield stress fluids. We focus on materials in which noncolloidal particles interact with the suspending fluid only through hydrodynamical interactions. We observe that both the elastic modulus and yield stress of bidisperse suspensions are lower than those of monodisperse suspensions of same solid volume fraction. Moreover, we show that the dimensionless yield stress of such suspensions is linked to their dimensionless elastic modulus and to their solid volume fraction through the simple equation of Chateau et al.[J. rheol. 52, 489-506 (2008)]. We also show that the effect of the particle size heterogeneity can be described by means of a packing model developed to estimate random loose packing of assemblies of dry particles. All these observations finally allow us to propose simple closed form estimates for both the elastic modulus and the yield stress of bidisperse suspensions: while the elastic modulus is a function of the reduced volume fraction Ï•/Ï•m\phi/\phi_m only, where Ï•m\phi_m is the estimated random loose packing, the yield stress is a function of both the volume fraction Ï•\phi and the reduced volume fraction

    Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish

    Get PDF
    addresses: The Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter EX4 4PS, UK.types: Journal Article; Research Support, Non-U.S. Gov'tCopyright © 2010 American Chemical Society. Post print version of article deposited. The final published version is available from: http://dx.doi.org/10.1021/es901971aNanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment, there is uncertainty on exposure because of a lack of understanding and data regarding the fate, behavior, and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)), from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations were measured by a wide range of analytical methods. Definitive uptake from the water column and localization of TiO(2) NPs in gills was demonstrated for the first time by use of coherent anti-Stokes Raman scattering (CARS) microscopy. Significant uptake of nanomaterials was found only for cerium in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3 mum) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish

    Internal states of model isotropic granular packings. I. Assembling process, geometry and contact networks

    Get PDF
    This is the first paper of a series of three, reporting on numerical simulation studies of geometric and mechanical properties of static assemblies of spherical beads under an isotropic pressure. Frictionless systems assemble in the unique random close packing (RCP) state in the low pressure limit if the compression process is fast enough, slower processes inducing traces of crystallization, and exhibit specific properties directly related to isostaticity of the force-carrying structure. The different structures of frictional packings assembled by various methods cannot be classified by the sole density. While lubricated systems approach RCP densities and coordination number z^*~=6 on the backbone in the rigid limit, an idealized "vibration" procedure results in equally dense configurations with z^*~=4.5. Near neighbor correlations on various scales are computed and compared to available laboratory data, although z^* values remain experimentally inaccessible. Low coordination packings have many rattlers (more than 10% of the grains carry no force), which should be accounted for on studying position correlations, and a small proportion of harmless "floppy modes" associated with divalent grains. Frictional packings, however slowly assembled under low pressure, retain a finite level of force indeterminacy, except in the limit of infinite friction.Comment: 29 pages. Published in Physical Review

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page

    Identification of a candidate gene for astigmatism

    Get PDF
    PURPOSE. Astigmatism is a common refractive error that reduces vision, where the curvature and refractive power of the cornea in one meridian are less than those of the perpendicular axis. It is a complex trait likely to be influenced by both genetic and environmental factors. Twin studies of astigmatism have found approximately 60% of phenotypic variance is explained by genetic factors. This study aimed to identify susceptibility loci for astigmatism

    Associations with photoreceptor thickness measures in the UK Biobank.

    Get PDF
    Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness
    • …
    corecore