2,085 research outputs found

    The Use of Multi-beam Sonars to Image Bubbly Ship Wakes

    Get PDF
    During the past five years, researchers at Penn State University (PSU) have used upward-looking multi-beam (MB) sonar to image the bubbly wakes of surface ships. In 2000, a 19-beam, 5° beam width, 120° sector, 250 kHz MB sonar integrated into an autonomous vehicle was used to obtain a first-of-a-kind look at the three-dimensional variability of bubbles in a large ship wake. In 2001 we acquired a Reson 8101 MB sonar, which operates at 240 kHz and features 101-1.5º beams spanning a 150º sector. In July 2002, the Reson sonar was deployed looking upward from a 1.4 m diameter buoy moored at 29.5 m depth in 550 m of water using three anchor lines. A fiber optic cable connected the sonar to a support ship 500 m away. Images of the wake of a small research vessel provided new information about the persistence of bubble clouds in the ocean. An important goal is to use the MB sonar to estimate wake bubble distributions, as has been done with single beam sonar. Here we show that multipath interference and strong, specular reflections from the sea surface adversely affect the use of MB sonars to unambiguously estimate wake bubble distributio

    Evaluation of rigid registration methods for whole head imaging in diffuse optical tomography

    Get PDF
    Functional brain imaging has become an important neuroimaging technique for the study of brain organization and development. Compared to other imaging techniques, diffuse optical tomography (DOT) is a portable and low-cost technique that can be applied to infants and hospitalized patients using an atlas-based light model. For DOT imaging, the accuracy of the forward model has a direct effect on the resulting recovered brain function within a field of view and so the accuracy of the spatially normalized atlas-based forward models must be evaluated. Herein, the accuracy of atlas-based DOT is evaluated on models that are spatially normalized via a number of different rigid registration methods on 24 subjects. A multileveled approach is developed to evaluate the correlation of the geometrical and sensitivity accuracies across the full field of view as well as within specific functional subregions. Results demonstrate that different registration methods are optimal for recovery of different sets of functional brain regions. However, the “nearest point to point” registration method, based on the EEG 19 landmark system, is shown to be the most appropriate registration method for image quality throughout the field of view of the high-density cap that covers the whole of the optically accessible cortex

    High-density speckle contrast optical tomography (SCOT) for three dimensional tomographic imaging of the small animal brain

    Get PDF
    High-density speckle contrast optical tomography (SCOT) utilizing tens of thousands of source-detector pairs, was developed for in vivo imaging of blood flow in small animals. The reduction in cerebral blood flow (CBF) due to local ischemic stroke in a mouse brain was transcanially imaged and reconstructed in three dimensions. The reconstructed volume was then compared with corresponding magnetic resonance images demonstrating that the volume of reduced CBF agrees with the infarct zone at twenty-four hours.Peer ReviewedPostprint (author's final draft

    Banking of human tissue for biomonitoring and exposure assessment: utility for environmental epidemiology and surveillance.

    Get PDF
    Human tissue banking could provide a tool to address a number of public health concerns. We can potentially use it to monitor trends in human exposures, serve as an early warning system for new environmental exposures, assess low-level exposures around hazardous waste and other point sources of pollutants, evaluate the effectiveness of regulatory programs, and study etiologies of diseases (e.g., childhood cancer and birth defects) that are likely to be related to the environment. This article discusses opportunities to establish human tissue banks in connection with pre-existing public health surveillance programs for cancer and adverse reproductive outcomes. This is a cost-effective way to conduct surveillance and enhances the ability to carry out epidemiologic studies. The article also discusses ethical issues that are particularly important for public health practice. One is the issue of risk communication and the need to explain risks in a way that provides people with the information they need to determine appropriate action on the individual and community levels. Second is the issue of environmental justice. We recommend early involvement of communities that are likely to be involved in tissue-banking projects and full explanation of individual and group social risks from their participation

    Fast and efficient image reconstruction for high density diffuse optical imaging of the human brain

    Get PDF
    Real-time imaging of human brain has become an important technique within neuroimaging. In this study, a fast and efficient sensitivity map generation based on Finite Element Models (FEM) is developed which utilises a reduced sensitivitys matrix taking advantage of sparsity and parallelisation processes. Time and memory efficiency of these processes are evaluated and compared with conventional method showing that for a range of mesh densities from 50000 to 320000 nodes, the required memory is reduced over tenfold and computational time fourfold allowing for near real-time image recovery

    Quantitative evaluation of atlas-based highdensity diffuse optical tomography for imaging of the human visual cortex

    Get PDF
    Image recovery in diffuse optical tomography (DOT) of the human brain often relies on accurate models of light propagation within the head. In the absence of subject specific models for image reconstruction, the use of atlas based models are showing strong promise. Although there exists some understanding in the use of some limited rigid model registrations in DOT, there has been a lack of a detailed analysis between errors in geometrical accuracy, light propagation in tissue and subsequent errors in dynamic imaging of recovered focal activations in the brain. In this work 11 different rigid registration algorithms, across 24 simulated subjects, are evaluated for DOT studies in the visual cortex. Although there exists a strong correlation (R(2) = 0.97) between geometrical surface error and internal light propagation errors, the overall variation is minimal when analysing recovered focal activations in the visual cortex. While a subject specific mesh gives the best results with a 1.2 mm average location error, no single algorithm provides errors greater than 4.5 mm. This work demonstrates that the use of rigid algorithms for atlas based imaging is a promising route when subject specific models are not available
    corecore