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Abstract: During the past five years, researchers at Penn State University (PSU) have used 
upward-looking multi-beam (MB) sonar to image the bubbly wakes of surface ships.  In 2000, 
a 19-beam, 5° beam width, 120° sector, 250 kHz MB sonar integrated into an autonomous 
vehicle was used to obtain a first-of-a-kind look at the three-dimensional variability of 
bubbles in a large ship wake.  In 2001 we acquired a Reson 8101 MB sonar, which operates 
at 240 kHz and features 101-1.5º beams spanning a 150º sector. In July 2002, the Reson 
sonar was deployed looking upward from a 1.4 m diameter buoy moored at 29.5 m depth in 
550 m of water using three anchor lines.  A fiber optic cable connected the sonar to a support 
ship 500 m away.  Images of the wake of a small research vessel provided new information 
about the persistence of bubble clouds in the ocean.  An important goal is to use the MB 
sonar to estimate wake bubble distributions, as has been done with single beam sonar. Here 
we show that multipath interference and strong, specular reflections from the sea surface 
adversely affect the use of MB sonars to unambiguously estimate wake bubble distribution 

Keywords: Multi-beam sonar, bubble imaging, ship wake imaging 

1. INTRODUCTION 

For many years researchers have been seeking to understand acoustic propagation through 
and around surface ship wakes.  Acoustic measurements made by the US in the 1940’s 
showed that transmission loss (TL) through ship wakes depended upon whether the sound 
was transmitted across the wake or along the wake [1].   Measurements in the cross-wake 



  

direction showed that TL increased with increasing ship speed (and thus wake depth and 
intensity) and with increasing frequency up to 40 kHz.  However, measurements in the along-
wake direction showed “anomalously low” TL induced by the wake. 

At Penn State, an existing PE code has been modified to calculate TL between sources and 
receivers located inside a bubbly ship wake given the range- and depth-dependent sound 
speed and attenuation fields within the wake [2, 3].  The presence of bubbles significantly 
affects sound speed and acoustic attenuation in the ship wake; methods for calculating sound 
speed and attenuation from the bubble size distribution are well known [e.g. 4]. 

However, little is known about the size and spatial distribution of bubbles in ship wakes, 
and in particular, how they vary with ship operating conditions and the ocean environment.  
Two techniques have been used to place an acoustic measurement system under or inside the 
wake of a ship travelling at high speed: (1) fix the sensor and drive the ship over or beside it, 
thereby obtaining measurements of a single piece of the wake as it ages, or (2) put the sensor 
on a moving platform and obtain measurements of different parts of the wake. Since the 
bubble distribution in the wake varies with time and location, both types of measurements 
provide useful information.  The size and spatial distribution of bubbles in the wake has been 
estimated by direct measurements of acoustic attenuation and by acoustic backscattering from 
the wake.  Dumbrell [5] towed a multi-frequency attenuation measurement system and a 
single frequency backscattering system across the wake to obtain size and spatial bubble 
distributions in the cross-wake direction.  Trevorrow et. al. [6] have used six single-beam 
transducers mounted looking upward on a freely-drifting platform to measure the bubble size 
distribution at somewhat random locations in the wake.  Gallaudet and de Moustier [7] have 
towed a MB sonar behind a ship travelling at slow speed and measured backscatter from the 
bubbles at a fixed distance from the ship. 

An upward-oriented MB sonar is well suited for measuring ship wake bubble distributions 
because each ping provides bubble backscatter in two spatial dimensions, and a sequence of 
pings provides a three-dimensional look at the bubble field.  Laying a wake over a stationary 
MB sonar provides information about the time-evolution of the wake at a fixed point in 
space, although current can move the wake relative to the sonar field of view.  Alternatively, 
mounting an MB sonar on a high-speed underwater vehicle provides a means of measuring 
the bubble field variability at a fixed distance astern of the ship.  In both cases, we have found 
that multipath and specular scatter from the ocean surface can limit the usefulness of the MB 
sonar for ship wake bubble field characterization. 

2. MARCH 2000 SHIP WAKE MEASUREMENT 

In March 2000, an opportunity was presented to measure the spatial distribution of 
bubbles in the wake of a large US Navy ship.  It was decided to use a MB sonar built by Penn 
State in 1988 because it provided water column data and was integrated into an autonomous 
underwater vehicle (AUV) capable of speeds up to 28 kts.  The sonar is shown in Figure 1. 

2.1. Penn State multi-beam sonar description  

The Penn State MB sonar is completely contained in two 53 cm diameter cylindrical shell 
sections that are a total of 71 cm long.  It was integrated into ARL/Penn State’s autonomous 
test vehicle, which allows for its use in the upper 200 m of the world’s oceans.  Five 
piezoelectric transmit elements spaced around the shell provide 200 dB source level over a 
120° sector.  Seventeen 2” diameter polyvinylidene fluoride (PVDF) elements, each with a 5° 



  

conical beam, were spaced at 7.5° intervals to cover the 120° sector.  Operating at 250 kHz, 
received signals were bandpass filtered, basebanded, log-amplified, and sampled at about 4 
kHz.  The receiver has a dynamic range of 100 – 200 dB re 1 uPa.  The pulse length is 1 ms, 
and the transmit rate is variable. 

 
Fig.1: Penn State multi-beam sonar, fully-contained in a 53 cm dia. 71 cm long shell. 

2.2. Measurement approach 

With the MB sonar pointed upward, the AUV ran a pre-programmed course that crossed 
under the ship wake multiple times because the MB sonar data could not be processed in real 
time to generate steering commands and keep the vehicle under the wake.  The AUV was 
launched toward the ship as it passed by; it ran at 6.2 m/s and at a depth equal to twice the 
ship draft.  The ship has two propellers; ship speed was 9.3 m/s.  The AUV moved toward the 
ship wake and just prior to reaching it, executed a 75° turn to the left and began a sequence of 
turns designed to cross under the wake at angles of 15° to 22° between the vehicle heading 
and wake axis.  This course was selected over a straight trajectory directly under the ship 
wake because a small error in vehicle launch direction would have translated into an error in 
vehicle heading after the left turn, possibly causing the vehicle to miss the ship wake entirely.  
It turned out that the vehicle launch direction was excellent and the vehicle crossed under the 
wake eight times.  Unfortunately, an electrical problem in the vehicle stopped MB sonar data 
acquisition at the end of the third crossing. 

2.3. Wake data 

Figure 2 shows levels received from a pulse transmitted prior to the sonar arriving under 
the wake, and illustrates a common problem with MB data: leakage of the specular reflection 
from the surface into all beams.  The vertical axis in Fig. 2 is depth normalized by the draft of 
the ship; the horizontal axis is cross-track distance normalized by the beam of the ship.  The 
gray scale is echo strength.  The location of the MB sonar is the bottom-center of the plot.  
The light patch at the surface in the center beam is the surface echo.  However, all of the 
beams show echo energy at the same distance from the sonar as the surface.  Fig. 2 shows 
that the receive beam response falls off relatively smoothly to about –40 dB at 60° away from 
the main lobe.  This would generally be considered very good control of side lobe levels, but 
is a problem for the MB sonar because the specular surface reflection coming in through a 



  

side lobe can be stronger than echoes from bubbles in the main lobe.  In Fig. 2, echoes from 
above the sea surface are multipath due to specular reflection from the sea surface combined 
with bubble scattering.  This will be discussed in more detail shortly. 

 
Fig.2: Multi-beam sonar echo with no wake present, showing surface specular reflection 

leakage into all beam. 
 

 
Fig.3: Data from center beam only as the sonar passed under the ship wake. 

 
Fig. 3 shows received levels from the only the beam which is pointed directly upward for a 

sonar crossing under the wake.  The plot vertical axis is the same as in Fig. 2; the horizontal 
axis is distance travelled divided by the length of the ship.  The angle between the AUV 
heading and that of the ship was about 15°.  The intermittent line across the upper part Fig. 3 
is the surface echo.  Note that it is strong when the sonar is not under the wake, but attenuated 
when the sonar is under thicker parts of the wake.  Backscattering from the water volume 
very close to the sonar is responsible for the line across the bottom of the plot.  The wake in 
Fig. 3 is composed of two bubble masses that extend downward to 1 to 2 times the draft of 
the ship.  The two masses are probably associated with the ship’s two propellers. 



  

Fig. 4 shows the estimated depth of the wake during the crossing.  It was obtained by 
taking the range in each beam and ping at which the gradient of the echo becomes large.  The 
plot vertical axis is distance travelled in the cross-wake direction, normalized by the beam of 
the ship, and the horizontal axis is distance travelled along the wake normalized by the length 
of the ship.  The gray scale is depth normalized by the ship’s draft; black indicates a wake 
depth of nearly twice the draft.  Leakage of the surface specular return into side-looking 
beams has been removed from the data, and as a result, values are not plotted in Fig. 4 for 
every ping and beam.  Cross-wake structures protruding downward are called wake curtains; 
they indicate turbulence caused by velocity shear at the lower boundary of the wake. 

 
Fig.4: Estimated wake depth divided by ship draft from one wake crossing. The vehicle and 
sonar travelled from upper left to lower right.  The ship travelled from left to right.  Wake 

curtains indicate turbulence caused by velocity shear at the wake lower boundary. 

3. AUGUST 2002 SHIP WAKE MEASUREMENT 

 The March 2002 ship wake measurement provided useful information about the bubble 
spatial distribution in the along-wake direction.  However, the resolution of the data was 
limited by the 5° beam width of the sonar  (the diameter of a 5° beam 25 m from the sonar is 
2.2 m).  In 2001, the US Navy supported purchase of a Reson 8101 MB sonar that provided 
much higher resolution.  In August 2002, an opportunity was provided to measure the spatial 
distribution of ship wake bubbles at a site approximately 2.5 km east of San Clemente Island, 
which is about 80 km off the southern California coast. 

3.1. Sonar description 

The Reson 8101 sonar utilizes separate transmit and receive arrays to produce 101 1.5° 
degree beams spanning a 150° swath. The processor and display are connected to the wet end 



  

array via a coaxial cable limited in length to about 100 m, or alternatively, a fiber optic cable 
that allows a much greater separation distance.  A roll and pitch sensor and compass package 
provided MB sonar heading and attitude.  A pressure vessel was constructed to house a power 
supply, a fiber optic media converter, and other communication electronics. 

The 8101 features a variable length (21-225 μs) 240 kHz pulse transmitted by a line array 
projector, and backscattered signals are received on an orthogonally-oriented cylindrical 
array of elements.  Maximum range is 300m.  Reson provided an engineering software 
package called the “Snapshot” program, which  runs on a PC residing on the same local area 
network (LAN) as the 8101 processor.  The program allows the user to record amplitude and 
phase data for all samples on each of the 101 beams, out to the maximum range set by the 
user.  Each of the 101 beams are sampled at 15k samples/second, and the ping repetition rate 
(PRR) is 1-20 seconds, depending upon the maximum range setting.  This PRR is 
significantly slower that that achieved by the sonar in the bathymetric mode of operation, the 
rate being limited by the time required to transfer data across the LAN. 

Webber [8] calibrated the Reson 8101 transmit and receive arrays in the cross- and along-
track directions at ranges of 2-12 m.  The transmit beam is reduced 6 dB in the main direction 
in order to reduce leakage of specularly-reflected energy leakage into other beams. 

3.2. Measurement description 

The measurement approach used in August 2002 was to mount the sonar on a buoy 
deployed in a stable 3-point moor, and use a fiber optic cable to control the sonar and upload 
data in real time.  The sonar was pointed 30° down from the vertical rather than directly 
upward in an effort to reduce specular surface reflection contamination in all beams.  The 
M/V Independence1, a 61 m, 1798 ton research support boat ran over the top of the array 
several times, steering a course aligned with the main axis of the MB sonar.  M/V 
Independence has a 12.2 m beam and a 4.1 m draft, and is driven by two 2.2 m diameter 
propellers.  The propellers turn outboard; rotational speed during the runs was 288 rpm on 
both shafts; ship speed was 12 kts.  Environmental conditions at the time were benign, with 
surface current less that 0.1 m/s and significant wave height about 0.25 m.  The wind speed 
was 5 – 10 kts, but the measurement site was in the lee of San Clemente Island and the waves 
were fetch-limited.  The sound speed profile featured a mixed layer down to about 7 m, and a 
thermocline below that extending to about 100 m depth. 

3.3. Wake data 

Fig. 5 shows a sequence of three MB sonar images projected onto a vertical plane 
containing the sonar and approximately perpendicular to the wake axis.  The gray scale 
indicates echo level in dB relative to an arbitrary reference.  The sonar is located at the origin 
and the ocean surface is marked with a dashed line.  The top image was made before the ship 
passed over the sonar.  In addition to a strong echo from the ocean surface (coincident with 
the dashed line), there is a line of echoes about 20 m long, parallel to the surface but about 4 
m below it, which is due to specular reflection from the surface directly over the sonar.  The 
surface above the sonar has been ensonified through a transmit side lobe at approximately 
30° from the main lobe that is -19 dB down [8].  Note that both the specular surface reflection 

                                                           
1 http://www.nfesc.navy.mil/ocean/esc50/Indy/default.htm 



  

and the off-specular surface echo 
contribute energy, indicating side lobe 
interference like that seen in the March 
2000 data. Finally, a wake edge 
detection algorithm based upon the 
gradient of the echo energy produced 
the line connecting black dots. 

The second image was made about 
20 seconds after M/V Independence 
passed over the sonar.  Echo strength 
is uncompensated for attenuation by 
the wake.  Judging by where the echo 
is strong, the wake is about 35 m wide 
and centered about 8 m to the left of 
directly over the sonar.  A semicircular 
band of energy extending across all 
beams is due to energy scattered by 
the wake entering through the side 
lobes of most of the receive beams. In 
many beams, it is difficult to 
distinguish between wake echo and 
leakage from the specular surface 
return directly over the sonar.  The 
wake image extends above the surface.  
To understand this, the length of the 
path through the transmit main lobe to 
the surface, specularly reflected back 
to the wake edge, and scattered back 
along the same path was calculated.  
Most of the echo above the surface is 
within the boundary of this multipath.  
The multipath calculation assumed 
straight-line propagation and did not 
take into account refraction due to the 
sound speed profile, which is a 
possible reason for the wake echoes 
that are outside the multipath 
boundary. 

The third image was made about 
200 seconds after the second image. It 
shows that the center of the wake has 
drifted about 10 m to the left and that 
the two lobes have expanded outward.  
There is wake echo energy outside of 
the multipath range boundary, 

particularly at large receive beam angles.  Using ray tracing rather than straight-line 
propagation to calculate the multipath boundary would extend the boundary outward, perhaps 
far enough to encompass the entire wake echo above the surface. 

There are at least two other multipaths that can occur, considering only ensonification 
through the transmit main lobe.  They are: 

Fig. 5: Top: image made before the ship crossed
over the array; middle: 20 s after M/V Independence
passed over; Bottom: 200 s after ship passage.

Fig. 5: Top: image made before the ship crossed
over the array; middle: 20 s after M/V Independence
passed over; Bottom: 200 s after ship passage.



  

• Transmit array –> bubble scatter –> specular reflection at the surface –> receive array. 
• Transmit array –>specular reflection at the surface –> bubble scatter –> receive array. 
The first type always arrives at the receive array before the echo from the surface and thus 
interferes with echoes from the bubbles.  The second type can arrive just prior to or just after 
the echo from the surface, and thus also interferes with the direct path echo. 

4. CONCLUSIONS 

Multi-beam sonars offer the obvious advantage of higher coverage rate relative to single 
beam sonars, and as such have proved quite useful for hydrographic applications.  Their use 
for water column investigations has likewise yielded valuable information, but there are 
issues with multipath and surface specular returns through side lobes that must be addressed 
before MB sonars can provide unambiguous estimates of bubble distribution.  Multipath 
energy must be accounted for, and even with the transmit beam pointed away from the 
surface, specular and near-specular echoes still get into all receive beams.  The following 
suggestions are offered: 
• Employ a baffle near the transmit array to attenuate the specular surface return. 
• Use a longer transmit array that is shaded to reduce side lobe levels. 
• Provide an option to record receive element levels so that the user can steer nulls or trade 

off receive beam width and side lobe levels. 
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