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Abstract: Image recovery in diffuse optical tomography (DOT) of the 
human brain often relies on accurate models of light propagation within the 
head. In the absence of subject specific models for image reconstruction, 
the use of atlas based models are showing strong promise. Although there 
exists some understanding in the use of some limited rigid model 
registrations in DOT, there has been a lack of a detailed analysis between 
errors in geometrical accuracy, light propagation in tissue and subsequent 
errors in dynamic imaging of recovered focal activations in the brain. In 
this work 11 different rigid registration algorithms, across 24 simulated 
subjects, are evaluated for DOT studies in the visual cortex. Although there 
exists a strong correlation (R2 = 0.97) between geometrical surface error 
and internal light propagation errors, the overall variation is minimal when 
analysing recovered focal activations in the visual cortex. While a subject 
specific mesh gives the best results with a 1.2 mm average location error, 
no single algorithm provides errors greater than 4.5 mm. This work 
demonstrates that the use of rigid algorithms for atlas based imaging is a 
promising route when subject specific models are not available. 

© 2014 Optical Society of America 

OCIS codes: (110.6960) Tomography; (170.2655) Functional monitoring and imaging; 
(170.3010) Image reconstruction techniques; (170.3660) Light propagation in tissues. 
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1. Introduction 

Diffuse optical tomography (DOT), also known as near infrared tomography is a functional 
imaging modality for soft biological tissue [1]. DOT is capable of measuring the intrinsic 
absorption and scattering in diffuse media using Near Infrared (NIR) light (wavelengths 
between 650 and 1000 nm), which are then used to derive spatially resolved maps of tissue 
chromophore concentrations such as oxygenated and deoxygenated haemoglobin. DOT has 
been applied to monitor tissue metabolic state [2], breast cancer diagnosis [3], imaging 
functional activity in the human brain [4–6] and neonatal brain monitoring [7–9]. While most 
hemodynamic-based neuroimaging research studies in adult subjects are typically performed 
using functional magnetic resonance imaging (fMRI), its relative high cost, fixed scanner 
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locations and physical constraints during imaging, limit fMRI’s translation as a bedside 
clinical tool [10]. DOT has shown a strong potential in clinical application specifically for 
neonate and long-term bedridden patients [11] and NIR studies of the human brain have 
demonstrated its ability to recover abnormalities as haemorrhage detection from stroke 
patients [12] with accurate recovery of stimulated activations [13–15] and functional 
networks [5, 16, 17]. 

In the recovery process of brain activations using DOT, a forward model is used for the 
simulation of NIR light propagation within the head. An inverse process based on this 
forward model is then used to recover the changes in the optical properties associated with 
functional activations. It is therefore imperative that the forward model accurately represents 
the subject being imaged as the propagation of light within tissue is a non-linear function of 
both shape, size and internal structure and (often assumed) underlying optical properties. 
Where available, the forward model is based on a subject-specific anatomical head model: 
structural MRI provides a-priori information about the absolute geometry and internal 
structures of the head [18, 19]. When subject specific models are not available, a registered 
(atlas based) anatomical head model can be used as an alternative [20–22]. The head atlas 
often used is a model that contains the structural information of the human brain based on an 
average of multiple subjects. For example the ICBM152 atlas as generated in the ICBM 
project uses segmented and co-registered MRI images from 152 subjects and is widely used 
[23, 24]. An atlas such as this can be used to provide internal structural information as well as 
an approximation of the external head shape instead of subject-specific MRI in atlas-based 
DOT. 

Registration between the atlas and the subject being imaged using DOT is one of the 
main steps in atlas-based DOT of the human brain and therefore the evaluation of the 
accuracy of the registration methods themselves has been of great importance. Different 
registration methods can be used based on either rigid or non-rigid methods as well as 
different number of registration points (also referred to as landmark or fiducial markers) from 
the external surface or volumes [25, 26]. The utilisation of registration methods within 
human brain imaging has been used for either registering different types of images such as 
CT and MRI from same subject or registering image data from different subjects into an atlas 
space (for data analysis) [27], while its use in DOT is relatively new but has received much 
attention [20, 21]. 

A surface based rigid registration method has been utilised by Huppertz et al [28] for 
EEG and MRI data by matching the surface from a 3D scanning device to the surface 
extracted from MRI images. Using this method the average error was found to be 0.3 mm 
based on the location error of fiducial points of the head surface, namely, the location of 
electrodes in EEG system. The size and distribution of fiducial points used for registration is 
also an important aspect which was investigated by West et al. which focused on fiducial 
point-based registration for cranial neurosurgery [26]. This study showed that the landmarks 
must be narrower than 4 mm to get a registration with an acceptable error while increasing 
the number of fiducial points and avoiding near-collinear configurations also improved the 
registration accuracy. Singh et al developed a fiducial point-based registration method that 
registered multichannel, multi-subject NIR data to MNI space (a standard atlas space 
developed at the Montreal Neurological Institute) which used 19 fiducial points from EEG 
10/20 landmark system and an iterative closest point algorithm for the optimization [29]. The 
accuracy of the method was evaluated by the closest surface points on the registered model 
and the atlas with the location error found to be within 4.7 to 7.0 mm. 

Non-rigid registration is most commonly used in studies where subject-specific data 
needs to be registered with an average model or reference space such as MNI space for 
analysis. Different combinations of this approach can be used. For example, Crum et al. 
divided the non-rigid registration into geometric approaches (registration methods based on 
anatomical information) and intensity approaches (registration methods based on intensity 
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patterns) which demonstrated that combining geometric and intensity approaches is a more 
robust method for registration of human brain image [30]. There are a number of different 
toolboxes available publicly to allow non-rigid deformation and three of these were 
compared by Ardekania et al. using brain MRI scans [31]. The algorithms compared were the 
Automatic Image Registration (AIR; version 5), the Statistical Parametric Mapping (SPM99), 
and the Automatic Registration Toolbox packages (ART). These comparisons showed that all 
algorithms provide accuracy within geometrical error of less than 2.0 mm. Klein et al. 
focused on the evaluation and comparison between 14 non-rigid and 1 rigid registration 
method based on calculated overlay between different brain regions from an average head 
and registered subject models from different subjects [32]. It was shown that non-rigid 
registration is more accurate providing an average accuracy of 75% in overlay. However, 
non-rigid methods often require both surface information and the internal structure of the 
subject head, while rigid methods can be used when the internal information is not available, 
which is a common problem faced with atlas based image recovery in DOT. 

Previous studies in utilisation of atlas based DOT are focused on evaluation of the 
accuracy in reconstruction result directly. In these studies, the accuracy of the recovered 
images are evaluated by comparison between a reference and the atlas-based reconstruction 
with the evaluation criteria typically generated mostly based on the localization error or 
overlapping percentage of the two reconstructed areas. Custo et al. compared the DOT 
recovery of the same brain activation based on subject-specific models and the corresponding 
registered atlas [20]. The atlas was registered to each individual subject based on a rigid 
registration using fiducial points from EEG 10/20 system. 3 subjects were used in the study 
and the results from the subject and the registered atlas based model showed ~70% overlay. 
Cooper et al. also focused on comparison of DOT recovery using subject-specific and 
registered models using the same registration method as Custo et al. but using simulated data 
from 32 subjects [22]. The accuracy of the recovery result was evaluated based on mean 
Euclidean, mean geodesic and mean Hausdorff error. Localization error of atlas based DOT 
was approximately 18 mm in Euclidean space, and 9 mm for DOT with subject-specific 
model. Based on this study although the atlas based DOT demonstrated larger reconstruction 
errors, it was deemed as an acceptable alternative when subject-specific model is not 
available. Ferradal et al. used a similar landmark system after adjusting the fiducial location 
that concentrate on the region of interest being imaged (visual cortex) [21]. Subject specific 
and atlas based DOT with linear registration and a non-linear registration method based on a 
B-spline transformation were compared to fMRI data for comparisons using a group analysis. 
For the group analysis, each subject was registered to the standard atlas and the reconstructed 
activation was generated based on statistical tests. Atlas-based DOT had an average 
localization error of 2.7mm compared to subject-specific model, and 6.6mm to fMRI. 
Although all of these studies are focused on evaluation of the recovered activations (images) 
from a ‘single’ registration method, they show that in their respective studies, the 
reconstructions based on an atlas model have acceptable accuracy using both simulated and 
experimental data and can be considered as an alternative when subject specific anatomical 
mesh is not available. 

The previous works in atlas based DOT discussed above are focused on investigation and 
comparison of the registration method based on a ‘single’ fiducial points system in terms of 
geometrical error and/or the recovered activation. To date, the effect of registration algorithm 
or fiducial number and location on atlas-based DOT data quality have yet to be fully 
evaluated. As model-based image recovery in DOT relies on accurate models for light 
propagation, no work to date has investigated the effect of registration errors on consequent 
errors in the light model, which directly affects the parameter recovery accuracy. The optical 
properties of the human head can be modeled with 5 major layers, skin, scalp, bone, CSF, 
gray matter and white matter. In ‘rigid’ registration methods that rely only on external 
markers these layers are also rigidly transformed. It is therefore important to not only 
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consider the external geometry error, but also the consequent error on the light model within 
the layered tissues. In summary, atlas-based DOT can be divided into three steps: 1) 
registration between the atlas model and the subject, 2) generation of the light propagation 
model using the registered atlas, and 3) recovery of brain activations. All three steps are 
evaluated in the presented work. 

Full-head anatomical 3D images from 24 subjects are used to evaluate the accuracy of 4 
different rigid registration methods, each using a combination of 5 different fiducial points, 
giving rise to 11 different algorithms. The accuracy of each algorithm is investigated by 
evaluating the error of the light propagation model thereby considering the quality of not just 
the external registration, but also the effects of registration of the internal structures. Finally 
to demonstrate the overall consequence on parameter recovery, each of the 11 algorithms are 
evaluated using simulated functional activation data from the visual cortex for all 24 subjects. 

2. Methods 

Image recovery in DOT using measured NIR data from a human subject involves data 
calibration (data-preprocessing) as well as model based image reconstruction. Data 
calibration is a critical aspect of image reconstruction regardless of the modeling method 
utilized and is covered in detail elsewhere [5]. Regardless of whether using subject specific 
or atlas-based models, the domain of interest needs to be segmented and meshed, which is 
achieved using NIRVIEW [33]. For model based image reconstruction, different models of 
light propagation in tissue can be utilized; in this work we use a finite element model (FEM) 
of the head using the open source package NIRFAST [34]. 

2.1 Subject specific models 

Image recovery using subject specific models can be summarized using the flowchart shown 
in Fig. 1. Specifically, MRI data from a given subject is used together with Statistical 
Parametric Mapping (SPM) [35, 36] which first allows a parametric segmentation of the 5 
tissue types (skin, bone, CSF, gray and white matter) based on the pixel intensity probability 
function distribution, which is then used together with NIRVIEW and NIRFAST to create 
masks and layered volumetric FEM meshes. The optical properties used for each layer are 
typically accepted to be subject specific, but throughout this work, the values shown in Table 
1 are used [37–39]. 

Table 1. Head tissue optical properties at 750 nm 

 
µa (mm−1) / µ’s 
(mm−1) 

Scalp 0.0170 / 0.74 
Skull 0.0116 / 0.94 
CSF 0.004 / 0.3 

Gray Matter 0.0180 / 0.8359 
White Matter 0.0167 / 1.1908 
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Fig. 1. Workflow of creating subject specific models from subject MRI. 

2.2 Atlas based models 

Registration for DOT recovery using atlas based models can be summarized using the 
flowchart in Fig. 2. Specifically, for atlas based DOT there are 3 major steps: 1) Registration 
of the atlas: affine transformation matrices are generated based on fiducial points extracted 
from surfaces of the atlas model and the subject head. These transformation matrices are then 
applied to the atlas model to generate the registered atlas based light model in the subject 
specific space. All transformed FEM models are then checked for consistency and accuracy 
using NIRFAST [32]. 2) Generation of the forward model where NIR light propagation 
through the domain is simulated based on the registered atlas model. The internal structures 
of the head are provided by registered atlas, based entirely on registration of the external 
surface. 3) Recovering the activation maps: The model of light from step 2 is used to 
calculate the sensitivity matrix which is then used to calculate the optical property changes 
based on simulated (or measured) subject specific data. 

 

Fig. 2. Workflow of creating atlas based models using registration methods. 

2.2.1 Registration methods 

Landmark-based registration is a common rigid registration method for the human head. It 
can be used to generate an affine transformation matrix for the atlas model based on specific 
fiducial points as extracted from the atlas and subject head. There are two major steps in the 
registration process: 1) Fiducial points are extracted separately from surfaces of the atlas and 
subject head based on the same landmark system. 2) An affine transformation matrix is then 
generated and optimized by minimizing the distance between these two sets of landmarks. In 
order to provide a comprehensive comparison, 11 different rigid registration methods are 
studied and applied for the atlas based model for 24 subjects as summarized in Table 2 and 
Fig. 3. 
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Table 2. Rigid registration methods as well as different types of landmark systems used. 

Method Basic 4 EEG 19 EEG 40 Full head Line fitting 

ICP   

IP2P   

NP2P    

Line fitting  

2.2.2 Optimisation algorithms 

The second step of the registration consists of the generation of the affine transformation 
matrix that is optimized based on an algorithm which minimizes the distance between 
landmark pairs from subject and atlas models. Three algorithms are used in this study: 1) 
iterative Point to Point algorithm (P2P), 2) Non-iterative Point to Point algorithm (NP2P), 
and 3) Iterative Closest Point algorithm (ICP). 

In the P2P optimisation algorithm, there is a one-to-one corresponding relationship 
between landmarks from the subject and atlas model since the two landmarks sets are 
extracted based on the same landmark system. The P2P algorithm pairs corresponding 
landmarks from the subject and the atlas, and optimises the affine transformation matrix by 
minimizing the distance between the set of corresponding landmark pairs. The optimisation 
progresses iteratively through two steps: 

1. Generation of an affine transformation matrix based on minimisation of the mean 
square error (MSE) between the paired landmarks [Eq. (1)]: 

 
1

n

T i i
i

T arg min T Atlas Sub
=

= ∗ −  (1) 

where T is the affine transformation matrix, n is number of pairs in the landmark 
system, iAtlas  is a landmark from atlas model and iSub  is the corresponding 

landmark of iAtlas  from subject i. 

2. Generation of the registered atlas model by applying the affine transformation matrix 
to the atlas and as well as the landmarks set [Eq. (2)]: 

 1k k
i k iAtlas T Atlas −=  (2) 

where k
iAtlas  is the landmark from subject surface from iteration k and kT  is the 

corresponding affine transformation matrix. The registered model is then used as the 
atlas model in the next iteration. These processes are then repeated until the 
difference between iterative changes in the mean squared error is below some 
threshold. 

The NP2P optimisation algorithm is similar to P2P except the two steps of optimisation 
are only processed once. Compared to the iterative process, the Non-iterative process has a 
shorter processing time. 

The ICP optimisation algorithm is also similar to P2P except that a different pairing 
function is utilised [40]. Specifically, in the ICP algorithm the landmarks from the atlas 
model are paired with their closest landmarks from the subject, and the landmark pairs are 
reselected after each iteration based on their closest pairs. 
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2.2.3 Landmark systems 

Four different landmark systems are investigated in this study. The first landmark system is 
basic-4 landmark system, Fig. 3(a), which contains landmarks from four anatomically 
specified points: the nasion, which is the depressed area between the eyes and above the 
bridge of the nose; the inion, which is the most prominent point at the back of the head; and 
the two temples which are the area on the scalp above the ears. These four landmarks can be 
easily extracted manually from surface of heads. Since there are only four fiducial points in 
this basic-4-landmark system, only the NP2P algorithm is applied to this system, as further 
iterations do not provide additional improvements. 

Second and third landmark systems are EEG-19 and EEG-40 landmark systems Fig. 3(b) 
and 3(c). They both extract landmarks based on the location of scalp electrodes as defined by 
the EEG10/20 landmark systems [41–43]. Landmarks locations in these systems are selected 
based on distances among adjacent landmarks as well as the distances between these and the 
four basic anatomical landmarks. These two landmark systems are similar except for the 
density of fiducial points. EEG-19 landmark system is an EEG10/20 landmark system with 
19 fiducial points for each subject, and EEG-40 is an EEG10/20 landmark system with 40 
fiducial points. All three optimization algorithms are applied to these two landmark systems. 

The forth landmark system is a full-head landmark, Fig. 3(d), which places a high-density 
grid on the surface of the head based on the basic-4 landmarks and extracts landmarks 
uniformly from the grid, excluding facial features. This landmark system contains 700 
fiducial points evenly distributed across the whole scalp covering the cerebral cortex. All 
three optimization algorithms are applied to this landmark system. 

A line-fitting-based registration is also used, which generates and optimizes the affine 
transformation matrix by fitting curves extracted from the surface of the atlas model with 
those from the subject head surface Fig. 3(e). Three surface curves are extracted based on the 
basic-4 landmarks system above and an affine transformation matrix is then optimised by 
minimizing the differences on a set of discrete points along each of the lines, which is 
processed iteratively between two steps similar to that of P2P optimisation algorithm. 

Based on these landmark systems and the optimization algorithm outlined above, a 
comprehensive set of 11 different registration methods, Table 2, are evaluated in this study. 

 

Fig. 3. Set of 5 different Landmark systems used for registration. 

2.3 Geometrical error analysis 

Subject specific head meshes are generated from 24 different subjects using subject specific 
MRIs. The atlas head mesh is generated from the ICBM152 head atlas. The atlas mesh is 
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then registered to each of the subject specific meshes individually using the 11 registration 
methods listed in Table 2. Evaluation of the geometrical error of the registered atlas model 
against the subject specific model is calculated with the surface distance, defined as distance 
from each surface node of the subject’s mesh to its closest surface node of the registered 
atlas’ mesh. 

2.4 Sensitivity matrix error analysis 

A high density 24 source and 28 detector pad as described elsewhere [44] is placed on the 
surface of the head mesh, locations of which are determined by placing centre of pads on the 
inion of the head, so that the whole pad is on the scalp directly above the visual cortex. The 
registered atlas mesh share the same location of pad centre with their correspondent subject 
meshes. Sensitivity matrices are then generated based on all 24 subject meshes and 264 
registered atlas meshes (24 subjects × 11 registrations) using the NIRFAST software 
package. In the presented work, a single wavelength model based at 750 nm is considered 
and all the relevant optical properties for each layer within the head are given in Table 1. 
Relative error of the sensitivity matrices is calculated as percentage difference between 
sensitivity matrices generated from registered atlas models and those of the corresponding 
subject specific model. 

2.5 Focal activation error analysis 

Four individual focal activations are simulated in the four quadrants of the visual cortex for 
each subject. Each simulated activation has a radius of 7 mm and is limited at most to 3 mm 
depth from the surface of the brain (cortex). In the simulated activation region, a 24% change 
in optical parameter (absorption only) is set to cause at most a 5% change in the measured 
signal from the detectors [45]. In line with our current in vivo performance, 0.12%, 0.15%, 
0.41% and 1.42% Gaussian random noise was added to first (13mm), second (30mm), third 
(40mm) and fourth (48mm) nearest neighbour measurements to provide realistic data [46]. 
Only the first to fourth nearest neighbours for each source are used for image recovery. 
Simulated activations are then reconstructed using the subject mesh as well as the registered 
atlas mesh from each of the 11 registration methods. All presented results are limited to a 
region of interest (ROI) defined as the region under the imaging pad to a depth of 30 mm 
which has been determined the maximum possible imaging depth of the visual cortex for our 
imaging setup [44]. For parameter recovery, a spatially-varying regularisation is used [Eq. 
(3), (4)]. 

 ( ) 1T TJ JJµ I y
−

Δ = + ∝ Δ    (3) 

 
( )( )( )

 
 

maxT T

J

JJ g JJ
J

diaβ
=

+
  (4) 

where ∝  is the Tikhonov regularisation parameter, β is the spatial regularisation factor, with 
0.01, 0.01β∝= =  and J is the sensitivity matrix. μΔ  is the recovered change in optical 

properties and yΔ  is the change in boundary data due to the modeled focal activation. 

Additionally, to reduce artefacts in the reconstructions, a voxel-based Gaussian smoothing 
function (mean of 0 and standard deviation of 5 mm) is utilised. The recovered activation 
regions are then selected by thresholding the smoothed recovered changes based on either 
50% or 70% of the maximum recovered changes. 

The location error for the recovered activations cD  is given as Eq. (5). 

 2 2 2( ) ( ) ( )c r s r s r sD x x y y z z= − + − + −  (5) 
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where rx  ry  rz  are the coordinate of the centre of mass of the recovered activation; sx  sy  

sz  are the coordinate of centre of target simulated activation; nodes are number of nodes in 

activation region; nix  niy  niz  are the coordinate of node i in the region and aniμ  is recovered 

optical parameter of node i. The relative recovered volume of the region perv  is given as Eq. 

(6). 

 *100%r
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s

v
v

v
=  (6) 

where rv  is volume of the recovered activation; sv  is volume of the target simulated 

activation. The relative percentage overlay of the recovered region ovv  is given as Eq. (7). 

 *100%overlay
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s

v
v

v
=  (7) 

where overlayv  is volume of overlay between simulated activation and recovered activation; sv  

is volume of the target simulated activation. Finally, the average contrast in the recovered 
activation rμ  is given as Eq. (8). 
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where aniμ  is recovered change of optical parameter of node i, nodes is number of nodes in 

activation region. simμ  is simulated change of optical parameter. 

3. Results and discussions 

The aim of this work is to evaluate the errors due to atlas based image reconstruction in DOT 
for the visual cortex. Therefore, all presented results are limited to this ROI which is directly 
covered by the imaging pad. To provide a qualitative example of the calculated surface 
distance error, results from three different registration methods for a given subject are shown 
in Fig. 4. Although in this example the basic-4 landmark registration has high surface 
distance error on the top most part of the head (>10 mm), it has the lowest surface distance 
within the ROI (over the visual cortex). However, although both the EEG19ICP and 
FullnP2P registration have higher errors over the visual cortex, they provide a better match 
when considering the entire head. 

#214009 - $15.00 USD Received 13 Jun 2014; revised 21 Aug 2014; accepted 25 Sep 2014; published 13 Oct 2014
(C) 2014 OSA 1 November 2014 | Vol. 5,  No. 11 | DOI:10.1364/BOE.5.003882 | BIOMEDICAL OPTICS EXPRESS  3892



 

Fig. 4. Examples of calculated surface distance errors for three different registration methods. 
ROI is shown in black box is used for all quantitative analysis 

In order to provide a more detailed analysis from different registration methods over all 
24 subjects, whisker/box plots of the mean surface errors within the ROI are shown in Fig. 5. 
It can be seen that all registration methods have on average ~7mm surface distance error and 
no greater than 11 mm within the ROI. For the same landmark system, NP2P and P2P 
methods have a slight advantage over the ICP method. Basic-4 landmark registration, line-
fitting and full-head landmark registration, with NP2P and P2P show a slight advantage over 
other registration methods. 

 

Fig. 5. Surface geometry error for different registration methods for all 24 subjects. The 
central (red) lines represent the median, the box plots represent the 25th and 75th percentiles, 
whereas the whiskers present +/− 2.7 standard deviations. Outliers are presented as red 
crosses. 

All of the utilised registration methods rely on external landmarks for registration on to 
the subject model and all tissue types are deformed rigidly to provide the best match. The 
internal tissue structural information therefore relies only on external landmarks. Specifically 
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in this study, since the recovery of focal activations are expected from the cortical surface of 
the brain, it is necessary to evaluate the registration error not only to the external surface but 
also to internal structures. Figure 6 provides a qualitative example of the calculated surface 
distance error of the cortex from three different registration methods for a given subject. It 
can be seen that generally the geometric error is less than 5 mm, with the maximum error 
seen in the folds of the brain as expected. These errors are calculated for each registered atlas 
models individually, but plotted on the subject cortex. 

To investigate the accuracy of registration of internal structures once registered on to the 
subject, it is possible to calculate the joint-histogram of the subject specific mesh against the 
registered mesh (Fig. 7). To achieve this, the subject specific mesh and the registered atlas 
mesh are interpolated to the same voxel-based grid ensuring that each node in the grid has 
region labels (white matter, grey matter, CSF, skull, skin and air) from the two meshes. A 
region difference map is then generated based on the difference between the two labels and 
the joint histogram is calculated. Each region is normalized based on the number of nodes in 
the subject specific model to allow a fair comparison and only data from the ROI is shown. It 
can be seen that the joint histogram of fully registered meshes (i.e. subject specific versus 
subject specific) provides a unit diagonal plot, indicating that all the nodes from a given 
region in one model matched exactly with the same nodes in another. Conversely, if two 
models do not match exactly, some blurring (cross-talk) between nodes of different regions 
will be expected. It is evident that for the example shown in Fig. 7, for all registration 
methods, there exists a cross-talk between air/skin tissue as well as gray/white matter. More 
importantly, CSF is not well registered and has a strong cross-talk with neighbouring tissue 
types. 

 

Fig. 6. Examples of calculated cortex surface errors for three different registration methods. 
Top row: Back view. Middle row: Side view. Bottom row: Top view. 
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Fig. 7. Joint histograms of a single subject with different registration algorithms. 

The calculation of light propagation within the head, for model based DOT, relies not 
only on structural information about tissue layers, but also on the accuracy of the underlying 
optical properties. To quantitatively demonstrate the percentage error of assumed optical 
properties throughout the head based on different registration methods, a spatial map of 
tissue absorption error is shown for a given subject in Fig. 8. This is an axial slice through the 
entire head, mid-way within the imaging pad. It can be see that the largest error is at the 
CSF/Brain interface as well as CSF/Bone. There also exists an error at the skin layer, where 
as expected from Fig. 7, there exists a geometric registration error on the external surface. 

 

Fig. 8. Spatial map of error in tissue absorption at 750nm for a given subject for different 
registration methods. This is an axial slice through the registered atlas mesh, mid-way within 
the measurement pad. 

To provide a qualitative example of error of the sensitivity matrices, results from the 
three registration methods for a given subject are shown in Fig. 9. The mean relative error of 
the sensitivity matrices for all subjects within the ROI are used for quantitative evaluation of 
the inaccuracy of sensitivity matrices (Fig. 10). The relative errors of sensitivity matrices in 
ROI vary from less than 20% to more than 300%. For the same landmark system, NP2P and 
P2P methods have a slight advantage over ICP method. Basic-4 landmark registration, line-
fitting registration and full-head landmark registration with NP2P and P2P show an 
advantage over other registration methods which is consistent with the evaluation result of 
the surface geometry error. 

#214009 - $15.00 USD Received 13 Jun 2014; revised 21 Aug 2014; accepted 25 Sep 2014; published 13 Oct 2014
(C) 2014 OSA 1 November 2014 | Vol. 5,  No. 11 | DOI:10.1364/BOE.5.003882 | BIOMEDICAL OPTICS EXPRESS  3895



 

Fig. 9. Example of relative error of sensitivity matrices on the cortex. Note that only the 
regions with a total sensitivity greater that 1% of the maximum value are shown. 

 

Fig. 10. Mean relative sensitivity error for different registration methods for all 24 subjects. 
The central (red) lines represent the median, the box plots represent the 25th and 75th 
percentiles, whereas the whiskers present +/− 2.7 standard deviations. Outliers are presented 
as red crosses. 

In order to evaluate the correlation of these results with the geometric error data, the 
average mean error (for all 24 subjects) of both parameters (surface error versus sensitivity at 
the cortex) is plotted for each registration method in Fig. 11. It is seen that based on the 
average error, across all 24 subjects, there is a strong correlation between surface geometry 
error and cortex sensitivity error. The basis-4 landmark system is an anomaly, which can be 
explained by the fact that one of the four landmarks placed over the back of the head is 
providing a strong fiducial for registration. Ignoring the data from the basic 4 landmark 
system the calculate R2 value is 0.97, indicating that the surface geometry error can be used 
as a surrogate for approximating the error for sensitivity at the cortex surface. 
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Fig. 11. Mean relative sensitivity error 24 subjects versus mean surface error. Note that the 4 
basic landmark data is not considered for the R2 value or the best fit line. 

Evaluation of simulated focal activation result from all 24 subjects is based on the 
accuracy of recovered activation region. As an example, simulated activations of a given 
subject and the recovery result based on three registered atlas models as well as the subject 
specific model are shown in Fig. 12. Quantitative evaluations of the results from both the 
subject specific and registered atlas models are shown in Fig. 13. The most striking result is 
that although it has been shown that geometric surface error (and hence) sensitivity error 
(light propagation error) can be substantial depending on different types of registration 
algorithms, no single algorithm is providing errors greater than 4.5 mm in location error. This 
is perhaps expected as in most functional DOT imaging experiments, we are concerned with 
dynamic (often referred to temporal or difference) imaging, whereby rather than recovering 
an absolute image of optical properties, we are only concerned with recovery of changes with 
respect to a baseline and this type of image recovery has shown to be less prone to geometric 
and model errors as compared to static (absolute) imaging [14, 47, 48]. The relative overlay 
depends (as expected) on the threshold value and is closer to the expected 100% using the 
70% threshold. Nonetheless, all atlas based models overestimate the volume of the recovered 
activation ranging from 120% to ~200%. Conversely, the relative overlay is much better with 
50% threshold (as expected) at the expense of larger volume being recovered. The recovered 
contrast for all models is approximately the same with ~16% for 50% threshold and ~18% 
for 70% threshold. 

The subject specific mesh provided the best results with a 1.2 mm average location error 
and provides the most accurate recovery in terms of volume recover and overlay, regardless 
of whether 50% or 70% threshold is used. Basic 4 landmark registration, line-fitting 
registration and full-head landmark registration with NP2P and P2P show the best results 
using the atlas based models which is consistent with previous results. 
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Fig. 12. Example of focal activation recovery result for a single subject based on subject 
specific model and three registered atlas models. Note that each individual activation is color-
coded and represent an individual simulation. White lines in the zoomed in plots represent the 
simulated activation. 
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Fig. 13. Evaluation of focal activation recovery for all registration methods across all 24 
subjects. 

4. Conclusion 

In this work, a detailed workflow for the utilisation of atlas based models for image recovery 
in DOT is demonstrated with strong emphasis on High Density DOT of the visual cortex. In 
contrast to previously published work, 11 different registration algorithms have been utilised, 
using 24 different subjects. Additionally, the presented work has concentrated not only on 
analysing the geometrical match between different registration models, or evaluation of 
recovered focal activations, but also provides a quantitative evaluation of induced errors in 
estimated of internal tissue structural distributions and their effect on the accuracy of the light 
propagation model. 

It has been shown that all the registration methods provide recovery results for activations 
in visual cortex, which are less than 4.5 mm in localisation error. Although the difference in 
accuracy between different registration methods is not significant, the overall comparison of 
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accuracy of all the three steps (registration, light propagation model and image recovery) are 
consistent, which indicates that the accuracy of registration has a direct effect on accuracy of 
the corresponding sensitivity matrix and hence the corresponding recovery result. Comparing 
different algorithms, registration methods with NP2P and P2P optimization algorithms 
demonstrate a slight advantage over ICP optimization algorithms using the same landmark 
system on geometry errors, accuracy of the sensitivity matrices and the focal recovery. This 
is because point to point optimization algorithms aim to register corresponding landmark 
pairs specifically instead of closest landmark pair which is more accurate. Basic-4 landmark 
registration, line-fitting registration and full-head landmark registration with NP2P and P2P 
show an advantage over other registration methods. The improved accuracy of the full-head 
landmark registration is primarily due to the high- density of landmark sets utilised. 

For basic-4 landmark registration, since one of the four landmarks are extracted from 
inion which is on the surface of scalp directly above vision cortex registration method has 
shown better accuracy in this study, which is also true for the line-fitting algorithm. These 
may not be the case if the study was based on other regions of the brain, for example the 
motor cortex, for which other landmark systems may provide a better accuracy. 

Focal activation recovery results from the 50% and 70% thresholds have almost the same 
location error, with basic-4 landmark, line-fitting and full-head landmark registration using 
NP2P and P2P demonstrating better results. All models have a similar average contrast, 
though it is slightly higher for the 70% threshold. All proposed rigid registration methods 
show a similar accuracy on the recovery of activated area in visual cortex. However, with 
more landmarks needed for the registration, the landmark extraction and computational 
process become more complex and iterative process tends to increase the calculation time. 
For non-iterative processes, the computation time is usually a few seconds, but for an 
iterative process, it can be up to few minutes. Considering these two aspects, for recovery of 
focal activations in visual cortex, a registration method based on basic-4 landmark system is 
the most efficient method among the studied algorithms for atlas based DOT. However, other 
landmark systems may provide better accuracy when considering regions other than the 
visual cortex. 
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