1,127 research outputs found
One protein, different cell fate:the differential outcome of depleting GRP75 during oxidative stress in neurons
DNA single-strand break repair and spinocerebellar ataxia with axonal neuropathy-1
DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiesterase 1) protein and with a defect in repairing certain types of SSBs. Although SCAN1 is a rare neurodegenerative disorder, understanding the molecular basis of this disease will lead to better understanding of neurodegenerative processes. Here we review recent progress in our understanding of TDP1, single-strand break repair (SSBR), and neurodegenerative disease
Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial
Background
Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy
Poetry in the Free World
Since the time of the Reformation there have been incredible advances in scientific understanding and technological development. This change signaled a change in Western values, from the subjective to the objective. After hundreds of years, this cultural shift is creating a modern sense of despair. The author calls upon poets to fight the cult of objectivity in order to help the world reach another age in which they delight in the subjective and the spiritual
Recommended from our members
Heme oxygenase-1 derived carbon monoxide suppresses Aβ1-42 toxicity in astrocytes
Neurodegeneration in Alzheimer’s disease (AD) is extensively studied, and the involvement of astrocytes and other cell types in this process has been described. However, the responses of astrocytes themselves to amyloid peptides ((A; the widely accepted major toxic factor in AD) is less well understood. Here, we show that A(1-42) is toxic to primary cultures of astrocytes. Toxicity does not involve disruption of astrocyte Ca2+ homeostasis, but instead occurs via formation of the toxic reactive species, peroxynitrite. Thus, A(1-42) raises peroxynitrite levels in astrocytes, and A(1-42) toxicity can be inhibited by antioxidants, or by inhibition of nitric oxide (NO) formation (reactive oxygen species (ROS) and NO combine to form peroxynitrite), or by a scavenger of peroxynitrite. Increased ROS levels observed following A(1-42) application were derived from NADPH oxidase. Induction of heme oxygenase-1 (HO-1) protected astrocytes from A(1-42) toxicity, and this protective effect was mimicked by application of the carbon monoxide (CO) releasing molecule CORM-2, suggesting HO-1 protection was attributable to its formation of CO. CO suppressed the rise of NADPH oxidase-derived ROS caused by A(1-42). Under hypoxic conditions (0.5% O2, 48h) HO-1 was induced in astrocytes and A(1-42) toxicity was significantly reduced, an effect which was reversed by the specific HO-1 inhibitor, QC-15. Our data suggest that A(1-42) is toxic to astrocytes, but that induction of HO-1 affords protection against this toxicity due to formation of CO. HO-1 induction, or CO donors, would appear to present attractive possible approaches to provide protection of both neuronal and non-neuronal cell types from the degenerative effects of AD in the central nervous system
Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases
Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field
Two step activation of FOXO3 by AMPK generates a coherent feed-forward loop determining excitotoxic cell fate
Cerebral ischemia and excitotoxic injury induce transient or permanent bioenergetic failure, and may result in neuronal apoptosis or necrosis. We have previously shown that ATP depletion and activation of AMP-activated protein kinase (AMPK) during excitotoxic injury induces neuronal apoptosis by transcription of the proapoptotic BH3 only protein, Bim. AMPK, however, also exerts pro-survival functions in neurons. The molecular switches that determine these differential outcomes are not well understood. Using an approach combining biochemistry, single cell imaging and computational modeling, we here demonstrate that excitotoxic injury activated the bim promoter in a FOXO3-dependent manner. The activation of AMPK reduced AKT activation, and led to dephosphorylation and nuclear translocation of FOXO3. Subsequent mutation studies indicated that bim gene activation during excitotoxic injury required direct FOXO3 phosphorylation by AMPK in the nucleus as a second activation step. Inhibition of this phosphorylation prevented Bim expression and protected neurons against excitotoxic and oxygen/glucose deprivation-induced injury. Systems analysis and computational modeling revealed that these two activation steps defined a coherent feedforward loop; a network motif capable of filtering any effects of short-term AMPK activation on bim gene induction. This may prevent unwanted AMPK-mediated Bim expression and apoptosis during transient or physiological bioenergetic stress
- …
