42 research outputs found

    Development of a Multilayer MODIS IST-Albedo Product of Greenland

    Get PDF
    A new multilayer IST-albedo Moderate Resolution Imaging Spectroradiometer (MODIS) product of Greenland was developed to meet the needs of the ice sheet modeling community. The multiple layers of the product enable the relationship between IST and albedo to be evaluated easily. Surface temperature is a fundamental input for dynamical ice sheet models because it is a component of the ice sheet radiation budget and mass balance. Albedo influences absorption of incoming solar radiation. The daily product will combine the existing standard MODIS Collection-6 ice-surface temperature, derived melt maps, snow albedo and water vapor products. The new product is available in a polar stereographic projection in NetCDF format. The product will ultimately extend from March 2000 through the end of 2017

    An examination of the precipitation delivery mechanisms for Dolleman Island, eastern Antarctic Peninsula

    Get PDF
    Copyright @ 2004 Wiley-BlackwellThe variability of size and source of significant precipitation events were studied at an Antarctic ice core drilling site: Dolleman Island (DI), located on the eastern coast of the Antarctic Peninsula. Significant precipitation events that occur at DI were temporally located in the European Centre for Medium-Range Weather Forecasting (ECMWF) reanalysis data set, ERA-40. The annual and summer precipitation totals from ERA-40 at DI both show significant increases over the reanalysis period. Three-dimensional backwards air parcel trajectories were then run for 5 d using the ECMWF ERA-15 wind fields. Cluster analyses were performed on two sets of these backwards trajectories: all days in the range 1979–1992 (the climatological time-scale) and a subset of days when a significant precipitation event occurred. The principal air mass sources and delivery mechanisms were found to be the Weddell Sea via lee cyclogenesis, the South Atlantic when there was a weak circumpolar trough (CPT) and the South Pacific when the CPT was deep. The occurrence of precipitation bearing air masses arriving via a strong CPT was found to have a significant correlation with the southern annular mode (SAM); however, the arrival of air masses from the same region over the climatological time-scale showed no such correlation. Despite the dominance in both groups of back trajectories of the westerly circulation around Antarctica, some other key patterns were identified. Most notably there was a higher frequency of lee cyclogenesis events in the significant precipitation trajectories compared to the climatological time-scale. There was also a tendency for precipitation trajectories to come from more northerly latitudes, mostly from 50–70°S. The El Niño Southern Oscillation (ENSO) was found to have a strong influence on the mechanism by which the precipitation was delivered; the frequency of occurrence of precipitation from the east (west) of DI increased during El Niño (La Niña) events

    Sea-Level Rise: Projections for Maryland 2018

    Get PDF
    In fulfillment of requirements of the Maryland Commission on Climate Change Act of 2015, this report provides updated projections of the amount of sea-level rise relative to Maryland coastal lands that is expected into the next century. These projections represent the consensus of an Expert Group drawn from the Mid-Atlantic region. The framework for these projections is explicitly tied to the projections of global sea-level rise included in the Intergovernmental Panel on Climate Change Fifth Assessment (2014) and incorporates regional factors such as subsidence, distance from melting glaciers and polar ice sheets, and ocean currents. The probability distribution of estimates of relative sea-level rise from the baseline year of 2000 are provided over time and, after 2050, for three different greenhouse gas emissions pathways: Growing Emissions (RCP8.5), Stabilized Emissions (RCP4.5), and meeting the Paris Agreement (RCP2.6). This framework has been recently used in developing relative sea-level rise projections for California, Oregon, Washington, New Jersey, and Delaware as well as several metropolitan areas. The Likely range (66% probability) of the relative rise of mean sea level expected in Maryland between 2000 and 2050 is 0.8 to 1.6 feet, with about a one-in-twenty chance it could exceed 2.0 feet and about a one-in-one hundred chance it could exceed 2.3 feet. Later this century, rates of sea-level rise increasingly depend on the future pathway of global emissions of greenhouse gases during the next sixty years. If emissions continue to grow well into the second half of the 21st century, the Likely range of sea-level rise experienced in Maryland is 2.0 to 4.2 feet over this century, two to four times the sea-level rise experienced during the 20th century. Moreover, there is a one-in-twenty chance that it could exceed 5.2 feet. If, on the other hand, global society were able to bring net greenhouse gas emissions to zero in time to meet the goals of the Paris Climate Agreement and reduce emissions sufficient to limit the increase in global mean temperature to less than 2Celsius over pre-industrial levels, the Likely range for 2100 is 1.2 to 3.0 feet, with a one-in-twenty chance that it would exceed 3.7 feet. The difference in sea-level rise between these contrasting scenarios would diverge even more during the next century, with the failure to reduce emissions in the near term resulting in much greater sea-level rise 100 years from now. Moreover, recent research suggests that, without imminent and substantial reductions in greenhouse gas emissions, the loss of polar ice sheets-and thus the rate of sea-level rise-may be more rapid than assumed in these projections, particularly under the Growing Emissions scenario. These probabilistic sea-level rise projections can and should be used in planning and regulation, infrastructure siting and design, estimation of changes in tidal range and storm surge, developing inundation mapping tools, and adaptation strategies for high-tide flooding and saltwater intrusion

    Direct measurements of meltwater runoff on the Greenland ice sheet surface

    Get PDF
    Meltwater runoff from the Greenland ice sheet surface influences surface mass balance (SMB), ice dynamics, and global sea level rise, but is estimated with climate models and thus difficult to validate. We present a way to measure ice surface runoff directly, from hourly in situ supraglacial river discharge measurements and simultaneous high-resolution satellite/drone remote sensing of upstream fluvial catchment area. A first 72-h trial for a 63.1-km2 moulin-terminating internally drained catchment (IDC) on Greenland?s midelevation (1,207?1,381 m above sea level) ablation zone is compared with melt and runoff simulations from HIRHAM5, MAR3.6, RACMO2.3, MERRA-2, and SEB climate/SMB models. Current models cannot reproduce peak discharges or timing of runoff entering moulins but are improved using synthetic unit hydrograph (SUH) theory. Retroactive SUH applications to two older field studies reproduce their findings, signifying that remotely sensed IDC area, shape, and supraglacial river length are useful for predicting delays in peak runoff delivery to moulins. Applying SUH to HIRHAM5, MAR3.6, and RACMO2.3 gridded melt products for 799 surrounding IDCs suggests their terminal moulins receive lower peak discharges, less diurnal variability, and asynchronous runoff timing relative to climate/SMB model output alone. Conversely, large IDCs produce high moulin discharges, even at high elevations where melt rates are low. During this particular field experiment, models overestimated runoff by +21 to +58%, linked to overestimated surface ablation and possible meltwater retention in bare, porous, low-density ice. Direct measurements of ice surface runoff will improve climate/SMB models, and incorporating remotely sensed IDCs will aid coupling of SMB with ice dynamics and subglacial systemspublishersversionPeer reviewe

    Control, care, and conviviality in the politics of technology for sustainability

    Get PDF
    This article discusses currently neglected distinctions between control, care, and conviviality in the politics of technology for sustainability. We conceptualize control as the ambition to maintain fictitious borders between hierarchically ordered categories such as subjects and objects. This ambition is materialized into a wide range of Modern technological innovations, including genome editing and deep sea mining. Contrasting with control, we conceptualize values of care that constitute socio-technical practices where connections are prioritized over categories and hierarchy is countered with egalitarian commitment. In caring practices, objects are thus treated as subjects, often within political contexts that are dominated by ambitions to control. Building on care, we explore hopes for conviviality as mutualistic autonomy and decolonial self-realization to orient plural socio-technical pathways for moving beyond Modernity. We argue that such pathways are crucial for democratic transformations to sustainability. We illustrate our concepts using two brief case studies of agricultural developments. The first case discusses the politics of control in agricultural biotechnologies in Belgium. The second case reports on care within rural people's coping strategies in a south Indian "green revolution" landscape laden with control. In conclusion, we emphasize the need to situate attempted materializations of control, care, and conviviality in specific historical junctures. Situated understandings of the interplay between control, care, and conviviality can help realize sustainability that does not reproduce the centralizing, control-driven logic of Modern technocratic development

    Model Forecast Skill and Sensitivity to Initial Conditions in the Seasonal Sea Ice Outlook

    No full text
    We explore the skill of predictions of September Arctic sea ice extent from dynamical models participating in the Sea Ice Outlook (SIO). Forecasts submitted in August, at roughly 2 month lead times, are skillful. However, skill is lower in forecasts submitted to SIO, which began in 2008, than in hindcasts (retrospective forecasts) of the last few decades. The multimodel mean SIO predictions offer slightly higher skill than the single-model SIO predictions, but neither beats a damped persistence forecast at longer than 2 month lead times. The models are largely unsuccessful at predicting each other, indicating a large difference in model physics and/or initial conditions. Motivated by this, we perform an initial condition sensitivity experiment with four SIO models, applying a fixed 1 m perturbation to the initial sea ice thickness. The significant range of the response among the models suggests that different model physics make a significant contribution to forecast uncertainty

    Mind your plate! The ontonorms of Dutch dieting

    No full text
    In the Netherlands as elsewhere, the overriding message of most dieting advice is that a person who wants to lose weight needs to overrule the desires of her craving body. Her mind has to put itself in a sovereign position and make ‘good choices’ about what to eat. But there are many ways of doing so. Linking up with different traditions within nutrition science, different dieting techniques enact different versions of food and concern themselves with different bodies. The ideals they strive after and the dangers they warn against are different, too. In short, they incorporate different ontonorms. At the same time, in all the ‘mind your plate’ advice, however varied, bodies figure as endowed with a nature that is problematic under the present cultural circumstances. This is in contrast with advice to ‘enjoy your food’, that targets a body that is not naturally given, but deserves to be cultivated. As I bring out the details of the discrepancies between the ontonorms embedded in different kinds of dieting advice, the term ‘ontonorms’ serves as a methodological tool. It helps to focus the analysis. But this article does not provide a ‘theory of ontonorms’, instead it argues for theoretical fluidity and specificity

    Link Between Arctic Tropospheric BrO Explosion Observed from Space and Sea-Salt Aerosols from Blowing Snow Investigated Using Ozone Monitoring Instrument BrO Data and GEOS-5 Data Assimilation System

    No full text
    Bromine radicals (Br + BrO) are important atmospheric species owing to their ability to catalytically destroy ozone as well as their potential impacts on the oxidative pathways of many trace gases, including dimethylsulfide and mercury. Using space-based observations of BrO, recent studies have reported rapid enhancements of tropospheric BrO over large areas (so called "BrO explosions") connected to near-surface ozone depletion occurring in polar spring. However, the source(s) of reactive bromine and mechanism(s) that initiate these BrO explosions are uncertain. In this study, we investigate the relationships between Arctic BrO explosions and two of the proposed sources of reactive bromine: sea-salt aerosol (SSA) generated from blowing snow and first-year (seasonal) sea ice. We use tropospheric column BrO derived from the Ozone Monitoring Instrument (OMI) in conjunction with the Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system provided by National Aeronautics and Space Administration Global Modeling and Assimilation Office. Case studies demonstrate a strong association between the temporal and spatial extent of OMI-observed BrO explosions and the GEOS-5 simulated blowing snow-generated SSA during Arctic spring. Furthermore, the frequency of BrO explosion events observed over the 11-year record of OMI exhibits significant correlation with a time series of the simulated SSA emission flux in the Arctic and little to no correlation with a time series of satellite-based first-year sea ice area. Therefore, we conclude that SSA generated by blowing snow is an important factor in the formation of the BrO explosion observed from space during Arctic spring
    corecore