1,528 research outputs found

    Spin-orbit-driven band inversion in bilayer graphene by the van der Waals proximity effect.

    Get PDF
    Spin-orbit coupling (SOC) is the key to realizing time-reversal-invariant topological phases of matter1,2. SOC was predicted by Kane and Mele3 to stabilize a quantum spin Hall insulator; however, the weak intrinsic SOC in monolayer graphene4-7 has precluded experimental observation in this material. Here we exploit a layer-selective proximity effect-achieved via a van der Waals contact with a semiconducting transition-metal dichalcogenide8-21-to engineer Kane-Mele SOC in ultra clean bilayer graphene. Using high-resolution capacitance measurements to probe the bulk electronic compressibility, we find that SOC leads to the formation of a distinct, incompressible, gapped phase at charge neutrality. The experimental data agree quantitatively with a simple theoretical model in which the new phase results from SOC-driven band inversion. In contrast to Kane-Mele SOC in monolayer graphene, the inverted phase is not expected to be a time-reversal-invariant topological insulator, despite being separated from conventional band insulators by electric-field-tuned phase transitions where crystal symmetry mandates that the bulk gap must close22. Our electrical transport measurements reveal that the inverted phase has a conductivity of approximately e2/h (where e is the electron charge and h Planck's constant), which is suppressed by exceptionally small in-plane magnetic fields. The high conductivity and anomalous magnetoresistance are consistent with theoretical models that predict helical edge states within the inverted phase that are protected from backscattering by an emergent spin symmetry that remains robust even for large Rashba SOC. Our results pave the way for proximity engineering of strong topological insulators as well as correlated quantum phases in the strong spin-orbit regime in graphene heterostructures

    Vector-Virus Mutualism Accelerates Population Increase of an Invasive Whitefly

    Get PDF
    The relationships between plant viruses, their herbivore vectors and host plants can be beneficial, neutral, or antagonistic, depending on the species involved. This variation in relationships may affect the process of biological invasion and the displacement of indigenous species by invaders when the invasive and indigenous organisms occur with niche overlap but differ in the interactions. The notorious invasive B biotype of the whitefly complex Bemisia tabaci entered China in the late 1990s and is now the predominant or only biotype in many regions of the country. Tobacco curly shoot virus (TbCSV) and Tomato yellow leaf curl China virus (TYLCCNV) are two whitefly-transmitted begomoviruses that have become widespread recently in south China. We compared the performance of the invasive B and indigenous ZHJ1 whitefly biotypes on healthy, TbCSV-infected and TYLCCNV-infected tobacco plants. Compared to its performance on healthy plants, the invasive B biotype increased its fecundity and longevity by 12 and 6 fold when feeding on TbCSV-infected plants, and by 18 and 7 fold when feeding on TYLCCNV-infected plants. Population density of the B biotype on TbCSV- and TYLCCNV-infected plants reached 2 and 13 times that on healthy plants respectively in 56 days. In contrast, the indigenous ZHJ1 performed similarly on healthy and virus-infected plants. Virus-infection status of the whiteflies per se of both biotypes showed limited effects on performance of vectors on cotton, a nonhost plant of the viruses. The indirect mutualism between the B biotype whitefly and these viruses via their host plants, and the apparent lack of such mutualism for the indigenous whitefly, may contribute to the ability of the B whitefly biotype to invade, the displacement of indigenous whiteflies, and the disease pandemics of the viruses associated with this vector

    Children’s sedentary behaviour: descriptive epidemiology and associations with objectively-measured sedentary time

    Get PDF
    Background: Little is known regarding the patterning and socio-demographic distribution of multiple sedentary behaviours in children. The aims of this study were to: 1) describe the leisure-time sedentary behaviour of 9-10 year old British children, and 2) establish associations with objectively-measured sedentary time. Methods: Cross-sectional analysis in the SPEEDY study (Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people) (N=1513, 44.3% boys). Twelve leisure-time sedentary behaviours were assessed by questionnaire. Objectively-measured leisure-time sedentary time (Actigraph GT1M, <100 counts/minute) was assessed over 7 days. Differences by sex and socioeconomic status (SES) in self-reported sedentary behaviours were tested using Kruskal-Wallis tests. The association between objectively-measured sedentary time and the separate sedentary behaviours (continuous (minutes) and categorised into 'none' 'low' or 'high' participation) was assessed using multi-level linear regression. Results: Sex differences were observed for time spent in most sedentary behaviours (all p ≀ 0.02), except computer use. Girls spent more time in combined non-screen sedentary behaviour (median, interquartile range: girls: 770.0 minutes, 390.0-1230.0; boys: 725.0, 365.0 - 1182.5; p = 0.003), whereas boys spent more time in screen-based behaviours (girls: 540.0, 273.0 - 1050.0; boys: 885.0, 502.5 - 1665.0; p < 0.001). Time spent in five non-screen behaviours differed by SES, with higher values in those of higher SES (all p ≀ 0.001). Regression analyses with continuous exposures indicated that reading (Ξ² = 0.1, p < 0.001) and watching television (Ξ² = 0.04, p < 0.01) were positively associated with objectively-measured sedentary time, whilst playing board games (Ξ² = -0.12, p < 0.05) was negatively associated. Analysed in categorical form, sitting and talking (vs. none: 'low' Ξ² = 26.1,ns; 'high' 30.9, p < 0.05), playing video games (vs. none: 'low' Ξ² = 49.1, p < 0.01; 'high' 60.2, p < 0.01) and watching television (vs. lowest tertile: middle Ξ² = 22.2,ns; highest Ξ² = 31.9, p < 0.05) were positively associated with objectively-measured sedentary time whereas talking on the phone (vs. none: 'low' Ξ² = -38.5, p < 0.01; 'high' -60.2, p < 0.01) and using a computer/internet (vs. none: 'low' Ξ² = -30.7, p < 0.05; 'high' -4.2,ns) were negatively associated. Conclusions: Boys and girls and children of different socioeconomic backgrounds engage in different leisure-time sedentary behaviours. Whilst a number of behaviours may be predictive of total sedentary time, collectively they explain little overall variance. Future studies should consider a wide range of sedentary behaviours and incorporate objective measures to quantify sedentary time where possible

    Having a lot of a good thing: multiple important group memberships as a source of self-esteem.

    Get PDF
    Copyright: Β© 2015 Jetten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedMembership in important social groups can promote a positive identity. We propose and test an identity resource model in which personal self-esteem is boosted by membership in additional important social groups. Belonging to multiple important group memberships predicts personal self-esteem in children (Study 1a), older adults (Study 1b), and former residents of a homeless shelter (Study 1c). Study 2 shows that the effects of multiple important group memberships on personal self-esteem are not reducible to number of interpersonal ties. Studies 3a and 3b provide longitudinal evidence that multiple important group memberships predict personal self-esteem over time. Studies 4 and 5 show that collective self-esteem mediates this effect, suggesting that membership in multiple important groups boosts personal self-esteem because people take pride in, and derive meaning from, important group memberships. Discussion focuses on when and why important group memberships act as a social resource that fuels personal self-esteem.This study was supported by 1. Australian Research Council Future Fellowship (FT110100238) awarded to Jolanda Jetten (see http://www.arc.gov.au) 2. Australian Research Council Linkage Grant (LP110200437) to Jolanda Jetten and Genevieve Dingle (see http://www.arc.gov.au) 3. support from the Canadian Institute for Advanced Research Social Interactions, Identity and Well-Being Program to Nyla Branscombe, S. Alexander Haslam, and Catherine Haslam (see http://www.cifar.ca)

    High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity

    Get PDF
    The RNA-programmable Cas9 endonuclease cleaves double-stranded DNA at sites complementary to a 20-base-pair guide RNA. The Cas9 system has been used to modify genomes in multiple cells and organisms, demonstrating its potential as a facile genome-engineering tool. We used in vitro selection and high-throughput sequencing to determine the propensity of eight Cas9:guide RNA complexes to cleave each of 10^12 potential off-target DNA sequences. The selection results predicted five off-target sites in the human genome that were confirmed to undergo genome cleavage in HEK293T cells upon expression of one of two Cas9:guide RNA complexes. In contrast to previous models, our results show that Cas9:guide RNA specificity extends past a 7- to 12-base pair seed sequence. Our results also suggest a tradeoff between activity and specificity both in vitro and in cells as a shorter, less-active guide RNA is more specific then a longer, more-active guide RNA. High concentrations of Cas9:guide RNA complexes can cleave off-target sites containing mutations near or within the PAM that are not cleaved when enzyme concentrations are limiting

    Optimal Estimation of Ion-Channel Kinetics from Macroscopic Currents

    Get PDF
    Markov modeling provides an effective approach for modeling ion channel kinetics. There are several search algorithms for global fitting of macroscopic or single-channel currents across different experimental conditions. Here we present a particle swarm optimization(PSO)-based approach which, when used in combination with golden section search (GSS), can fit macroscopic voltage responses with a high degree of accuracy (errors within 1%) and reasonable amount of calculation time (less than 10 hours for 20 free parameters) on a desktop computer. We also describe a method for initial value estimation of the model parameters, which appears to favor identification of global optimum and can further reduce the computational cost. The PSO-GSS algorithm is applicable for kinetic models of arbitrary topology and size and compatible with common stimulation protocols, which provides a convenient approach for establishing kinetic models at the macroscopic level

    On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory

    Get PDF
    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca2+-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel
    • …
    corecore