128 research outputs found

    A Preliminary Impact Study of CYGNSS Ocean Surface Wind Speeds on Numerical Simulations of Hurricanes

    Full text link
    The NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016, providing an unprecedented opportunity to obtain ocean surface wind speeds including wind estimates over the hurricane inner‐core region. This study demonstrates the influence of assimilating an early version of CYGNSS observations of ocean surface wind speeds on numerical simulations of two notable landfalling hurricanes, Harvey and Irma (2017). A research version of the National Centers for Environmental Prediction operational Hurricane Weather Research and Forecasting model and the Gridpoint Statistical Interpolation‐based hybrid ensemble three‐dimensional variational data assimilation system are used. It is found that the assimilation of CYGNSS data results in improved track, intensity, and structure forecasts for both hurricane cases, especially for the weak phase of a hurricane, implying potential benefits of using such data for future research and operational applications.Plain Language SummaryThe NASA Cyclone Global Navigation Satellite System (CYGNSS) was launched in December 2016. It provides an unprecedented opportunity to obtain ocean surface wind speeds over a hurricane inner‐core region. In this study, we combined the early version of CYGNSS data with all other observations that are currently available for operational forecasts to form initial conditions (inputs data) for a numerical weather prediction model. A research version of the National Oceanic and Atmospheric Administration operational hurricane forecast model named the Hurricane Weather Research and Forecast (HWRF) model is used. Results show that adding CYGNSS data into HWRF model results in improved track, intensity, and structure forecasts for two notable landfalling hurricanes, Harvey and Irma (2017), demonstrating the potential benefits of using CYGNSS data for future research and operational applications.Key PointsThe NASA Cyclone Global Navigation Satellite System (CYGNSS) provides an unprecedented opportunity to obtain ocean surface wind data over a hurricane inner‐core regionThis study found that the assimilation of CYGNSS data results in improved track, intensity, and structure forecasts for two notable landfalling hurricanes, Harvey and Irma (2017)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148339/1/grl58695.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148339/2/grl58695_am.pd

    Interfacial reaction and microstructural evolution between Au-Ge solder and electroless Ni-W-P metallization in high temperature electronics interconnects

    Get PDF
    © 2017 IEEE. The elevated working temperature of high temperature electronics can inevitably cause potential excessive growth of interfacial intermetallic compounds (IMCs), which can significantly deteriorate the mechanical integrity of electronic devices. Therefore, a robust diffusion barrier that can operate reliably under elevated temperature is highly demanded to retard the interfacial reaction between solder and substrate. In this work, a ternary Ni-W-P alloy was deposited through electroless plating and applied as an Under Bump Metalisation (UBM) to Au-Ge solder joints. The interfacial reaction in Au-Ge/Ni-W-P solder joints after reflow and prolonged ageing durations was investigated. We found NiGe and Ni5Ge3 layers formed after reflow, however only NiGe was observed after 1000h aging at 300°C. The thickness of NiGe increases linearly with the square root of ageing time up to 1500h, indicating that the growth mechanism of NiGe is diffusion-control process when Ge atoms are sufficient. After ageing for 2000h, although Ge atoms from Au-Ge solder was fully consumed, the Ni-W-P coating remained stable and exhibited excellent diffusion barrier property. During various ageing durations, the top-view morphology of NiGe IMC grains changed from pyramid-like and polygon-like shape at as-built stage to granulate-like (up to 1500h), and finally a polygon-like shape (after 2000h)

    Cardiopulmonary bypass for total aortic arch replacement surgery: A review of three techniques

    Get PDF
    One treatment for acute type A aortic dissection is to replace the ascending aorta and aortic arch with a graft during circulatory arrest of the lower body, but this is associated with high mortality and morbidity. Maintaining the balance between oxygen supply and demand during circulatory arrest is the key to reducing morbidity and is the primary challenge during body perfusion. The aim of this review is to summarize current knowledge of body perfusion techniques and to predict future development of this field. We present three perfusion techniques based on deep hypothermic circulatory arrest (DHCA): DHCA alone, DHCA with selective cerebral perfusion, and DHCA with total body perfusion. DHCA was first developed to provide a clear surgical field, but it may contribute to stroke in 4%–15% of patients. Antegrade or retrograde cerebral perfusion can provide blood flow for the brain during circulatory arrest, and it is associated with much lower stroke incidence of 3%–9%. Antegrade cerebral perfusion may be better than retrograde perfusion during longer arrest. In theory, blood flow can be provided to all vital organs through total body perfusion, which can be implemented via either arterial or venous systems, or by combining retrograde inferior vena caval perfusion with antegrade cerebral perfusion. However, whether total body perfusion is better than other techniques require further investigation in large, multicenter studies. Current techniques for perfusion during circulatory arrest remain imperfect, and a technique that effectively perfuses the upper and lower body effectively during circulatory arrest is missing. Total body perfusion should be systematically compared against selective cerebral perfusion for improving outcomes after circulatory arrest

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Alternative splicing derived invertebrate variable lymphocyte receptor displays diversity and specificity in immune system of crab Eriocheir sinensis

    Get PDF
    Variable lymphocyte receptors (VLRs) play vital roles in adaptive immune system of agnathan vertebrate. In the present study, we first discover a novel VLR gene, VLR2, from an invertebrate, the Chinese mitten crab, Eriocheir sinensis. VLR2 has ten different isoforms formed via alternative splicing, which is different from that in agnathan vertebrate with the assembly of LRR modules. The longest isoform, VLR2-L, responds to Gram-positive bacteria Staphylococcus aureus challenge specifically, while shows no response to Gram-negative bacteria Vibrio parahaemolyticus challenge, confirmed by recombinant expression and bacterial binding experiments. Interestingly, VLR2s with short LRRs regions (VLR2-S8 and VLR2-S9) tend to bind to Gram-negative bacteria rather than Gram-positive bacteria. Antibacterial activity assay proves six isoforms of VLR2 have pluralistic antibacterial effects on bacteria which were never reported in invertebrate. These results suggest that the diversity and specificity of VLR2 resulted from alternative splicing and the length of the LRRs region. This pathogen-binding receptor diversity will lay the foundation for the study of immune priming. Furthermore, studying the immune function of VLR2 will provide a new insight into the disease control strategy of crustacean culture

    The Use of Regional Data Assimilation to Improve Numerical Simulations of Diurnal Characteristics of Precipitation during an Active Madden–Julian Oscillation Event over the Maritime Continent

    No full text
    This study examines the impact of regional data assimilation on diurnal characteristics of precipitation and winds over the Maritime Continent (MC) using a set of cloud-permitting-scale (~3 km) numerical simulations with the mesoscale community Weather Research and Forecasting (WRF) model and the NCEP Gridpoint Statistical Interpolation (GSI)-based ensemble-3DVAR hybrid data assimilation system. Numerical experiments focus on January 2018, when a well-defined, active Madden–Julian Oscillation (MJO) propagated through the MC region. Available conventional and satellite data are assimilated. Results show that simulated precipitation with data assimilation generally agrees better with satellite-derived rainfall than the control simulation without data assimilation. Simulations with data assimilation also reproduce the diurnal cycle of precipitation better, especially for the timing of the precipitation peak. Data assimilation modulates the overstrong (overweak) diurnal forcing over the land (ocean) in the control simulation. The vertical phase shift of the thermodynamic environment, associated with the timing of vertical motion transition along with low-level water vapor supplies, results in maximum precipitation occurring later, especially over land. To further demonstrate the impact of data assimilation, an additional experiment assimilates NASA Cyclone Global Navigation Satellite System (CYGNSS)-derived ocean surface winds. The results indicate that the assimilation of CYGNSS data exhibits an evident impact on the diurnal variation of surface variables and a similar shift in the diurnal cycle of precipitation. Overall, this study highlights the importance of regional data assimilation in improving the representation of precipitation over the MC, paving the way for a better understanding of the interactions of local diurnal convective precipitation cycles with MJO

    Molecular Cloning and Characterization of Dmc1 from the Chinese Mitten Crab (Eriocheir sinensis)

    No full text
    Dmc1, a member of the RecA/Rad51 super family, is essential for meiotic recombination. In this study, a Dmc1 gene (EsDmc1) was identified from screening the larval transcriptomes of Chinese mitten crab Eriocheir sinensis. The full-length cDNA of EsDmc1 was 1478 bp long and contained a 1026 bp open-reading frame encoding 341 amino acids. The genomic fragment of EsDmc1 contained two exons separated by one intron. Several tandem repeats were found in intron. The deduced EsDmc1 protein contained motifs conserved in the RacA/Rad51 superfamily, including the Walker A and B motifs, and L1 and L2 loops. EsDmcl shared 87.3%, 86.5% and 77.4% identity with its homologues in Litopenaeus vannamei, Penaeus monodon and Ixodes scapularis, respectively. Phylogenetic analysis revealed that EsDmc1 had a closer relationship with Dmc1s from arthropods than vertebrates. The EsDmcl transcripts could be detected in all examined larval stages with the highest expression level in the fifth zoeal stage. These results suggest that EsDmc1 could be expressed before&nbsp; reproductive maturity and might have complex functions in crab reproduction.</p

    Mechanism of the Micellar Solubilization of Curcumin by Mixed Surfactants of SDS and Brij35 via NMR Spectroscopy

    No full text
    The micellar solubilization mechanism of curcumin by mixed surfactants of SDS and Brij35 was investigated at the molecular scale by NMR spectroscopy. Through the investigation of the micelle formation process, types and structures of mixed micelles and solubilization sites, the intrinsic factors influencing the solubilization capacity were revealed. For systems with αSDS = 0.5 and 0.2, the obtained molar solubilization ratios (MSRs) are consistent with the MSRideal values. However, for αSDS = 0.8, the solubilization capacity of curcumin is weakened compared to the MSRideal. Furthermore, only one single mixed SDS/Brij35 micelles are formed for αSDS = 0.5 and 0.2. However, for αSDS = 0.8, there are separate SDS-rich and Brij35-rich mixed micelles formed. In addition, NOESY spectra show that the interaction patterns of SDS and Brij35 in mixed micelles are similar for three systems, as are the solubilization sites of curcumin. Therefore, for αSDS = 0.5 and 0.2 with single mixed micelles formed, the solubility of curcumin depends only on the mixed micelle composition, which is almost equal to the surfactant molar ratio. Although curcumin is solubilized in both separate micelles at αSDS = 0.8, a less stable micelle structure may be responsible for the low solubility. This study provides new insights into the investigation and application of mixed micelle solubilization
    corecore