123 research outputs found

    Applying Model Based Techniques for Early Safety Evaluation of an Automotive Architecture in Compliance with the ISO 26262 Standard

    Get PDF
    International audienceIn 2011, the automotive industry introduced the application of a standardized process for functional safety-related development of automotive electronic products. The related international standard, ISO 26262 functional safety for road vehicles, has high demands on process documentation and analysis. Within an engineering context this challenges the tremendous increase of complexity for modern automotive systems and high productivity demands for industrial competiveness purpose. Model based development techniques based on an Architecture Description Language (ADL) has been identified as the best candidate to manage the system complexity and the related safety analysis with the benefit of formal description and capabilities for test automation. The proposed concept relies on the definition of a compositional error modeling approach tightly coupled with the system architecture model, capable to analyze the software and hardware architectures and implementations. This paper explains the results of the language extension based on the EAST-ADL and AUTOSAR domain model in terms of early safety evaluation of an automotive architecture, automating the qualitative and quantitative assessment of road vehicle products as claimed by the application of the ISO 26262

    Seismicity induced during the development of the Rittershoffen geothermal field, France

    Get PDF
    The development of the Rittershoffen deep geothermal field (Alsace, Upper Rhine Graben) between 2012 and 2014 induced unfelt seismicity with a local magnitude of less than 1.6. This seismicity occurred during two types of operations: (1) mud losses in the Muschelkalk formation during the drilling of both wells of the doublet and (2) thermal and hydraulic stimulations of the GRT-1 well. Seismicity was also observed 4 days after the main hydraulic stimulation, although no specific operation was performed. During chemical stimulation, however, no induced seismicity was detected. In the context of all field development operations and their injection parameters (flow rates, overpressures, volumes), we detail the occurrence or lack of seismicity, its magnitude distribution and its spatial distribution. The observations suggest the presence of the rock stress memory effect (Kaiser effect) of the geothermal reservoir as well as uncritically stressed zones connected to the GRT-1 well and/or rock cohesion. A reduction of the seismic rate concurrent with an increase of injectivity was noticed as well as the reactivation of a couple of faults, including the Rittershoffen fault, which was targeted by the wells. These results are derived from the homogeneous and consistent catalogue of more than 1300 local earthquakes that is provided. This reference catalogue is based on a standard detection method, whose output was manually verified and improved. The given absolute locations have been computed in a calibrated, geologically realistic 3D velocity model. Our work builds on previous analyses addressing the seismicity induced by the GRT-1 hydraulic stimulation and places the results into a historical context, thus considering the full dynamics of the observed phenomena. This paper also complements existing descriptions of the hydrothermal characteristics of the deep reservoir by providing insights separate from the wells

    A flavoprotein supports cell wall properties in the necrotrophic fungus Alternaria brassicicola

    Get PDF
    Background Flavin-dependent monooxygenases are involved in key biological processes as they catalyze a wide variety of chemo-, regio- and enantioselective oxygenation reactions. Flavoprotein monooxygenases are frequently encountered in micro-organisms, most of which require further functional and biocatalytic assessment. Here we investigated the function of the AbMak1 gene, which encodes a group A flavin monooxygenase in the plant pathogenic fungus Alternaria brassicicola, by generating a deficient mutant and examining its phenotype. Results Functional analysis indicates that the AbMak1 protein is involved in cell wall biogenesis and influences the melanization process. We documented a significant decrease in melanin content in the Δabmak1 strain compared to the wild-type and complemented strains. We investigated the cell wall morphology and physical properties in the wild-type and transformants using electron and atomic force microscopy. These approaches confirmed the aberrant morphology of the conidial wall structure in the Δabmak1 strain which had an impact on hydrophilic adhesion and conidial surface stiffness. However, there was no significant impairment in growth, conidia formation, pathogenicity or susceptibility to various environmental stresses in the Δabmak1 strain. Conclusion This study sheds new light on the function of a fungal flavin-dependent monooxygenase, which plays an important role in melanization

    On the interaction of vortices with mixing layers

    Get PDF
    We describe the perturbations introduced by two counter-rotating vortices - in a two-dimensional configuration - or by a vortex ring - in an axisymmetric configuration - to the mixing layer between two counterflowing gaseous fuel and air streams of the same density. The analysis is confined to the near stagnation point region, where the strain rate of the unperturbed velocity field, A0, is uniform. We restrict our attention to cases where the typical distance 2r0 between the vortices - or the characteristic vortex ring radius r0 - is large compared to both the thickness, δv, of the vorticity core and the thickness, δm∼(ν/A0)1/2, of the mixing layer. In addition, we consider that the ratio, Γ/ν, of the vortex circulation, Γ, to the kinematic viscosity, ν, is large compared to unity. Then, during the interaction time, A0,-1, the viscous and diffusion effects are confined to the thin vorticity core and the thin mixing layer, which, when seen with the scale r0, appears as a passive interface between the two counterflowing streams when they have the same density. In this case, the analysis provides a simple procedure to describe the displacement and distortion of the interface, as well as the time evolution of the strain rate imposed on the mixing layer, which are needed to calculate the inner structure of the reacting mixing layer as well as the conditions for diffusion flame extinction and edge-flame propagation along the mixing layer. Although in the reacting case variable density effects due to heat release play an important role inside the mixing layer, in this paper the analysis of the inner structure is carried out using the constant density model, which provides good qualitative understanding of the mixing layer response

    Large-Eddy Simulation of swirled flame stabilisation using NRP discharges at atmospheric pressure

    No full text
    In this work, the use of Nanosecond Repetitively Pulsed (NRP) discharges is investigated numerically to improve the stabilisation of the flame in a swirl burner. The studied configuration is the PACCI burner test rig set up at KAUST, in which it was experimentally demonstrated that NRP discharges can effectively enhance flame stability. Simulations are performed with the reactive compressible Navier–Stokes solver AVBP, using a recently developed phenomenological model for plasma-assisted combustion of methane-air premixed flame. The ability of the numerical model to reproduce the main flow behaviours is first assessed by comparison with PIV measurements in cold flow conditions. Then, a lean atmospheric pressure case (ϕ=0.67) without plasma actuation is simulated and compared with OH* chemiluminescence image from experiment. Both numerical and experimental results reveal an unstable turbulent flame, with intermittent attachment to the burner exit. Finally, two operating conditions with NRP discharges are simulated. The NRP discharges correspond to 10 kV pulses applied at a frequency of 20 and 30 kHz, respectively corresponding to a discharge power 0.72 and 1.17% of the thermal flame power. First, a significant stabilisation effect is observed when applying the discharges, which efficiently mitigate the flame lifting. This effect is quantitatively demonstrated by tracking the flame centre of gravity, which shows that the flame moves upstream under the influence of the plasma, in good agreement with experimental observations. Results also show that a net power gain is obtained by applying NRP discharges to combustion by comparing the thermal flame power to the plasma power. In particular, an increase of plasma actuation efficiency from 4 to 6 as been observed in the cases studied by increasing the plasma power

    Large-scale aseismic motion identified through 4-D P-wave tomography

    No full text
    In 2000, a large water injection (over 23 000 m(3)) has been conducted in granite through a 5-km-deep borehole at Soultz-sous-Forets, in the Upper Rhine Graben (northeastern France). The microseismicity induced by this hydraulic stimulation was monitored with a network of 14 seismic stations deployed at ground surface. Some 7215 well-located events have been used to conduct a 4-D tomography of P-wave velocities. The method combines a double-difference tomography method with an averaging post-processing that corrects for parameter dependence effects. The total set of 7 215 events has been divided into 14 subsets that explore periods defined with respect to the injection scheme. Particular attention is given to changes in injected flow rates, periods of stationary injection conditions and post-injection periods. Fast changes in V-P velocities are identified in large rock mass volumes precisely when the injection flow rate varies while little velocity variation is detected during stationary injection periods. The V-P anomalies observed during stationary injection conditions are interpreted as being caused by effective stress variations linked to fluid diffusion, while the fast changes observed concomitantly to changes in flow rate are considered to be caused by non-seismic motions

    Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forets, France

    No full text
    The state of stress and its implications for shear on fault planes during fluid injection are crucial issues for the HDR (Hot Dry Rock) or EGS (Enhanced or Engineered Geothermal System) concept. This is especially true for hydraulic stimulation experiments, aimed at enhancing the connectivity of a borehole to the natural fracture network, since they tend to induce the shearing of fractures, which is controlled by the local stress regime. During the 2000 and 2003 stimulation tests at Soultz-sous-Forets, France, about 10,000 microearthquakes were located with a surface seismological network. Hundreds of double-couple (DC) focal mechanisms were automatically determined from first-motion polarities using the FPFIT program [Reasenberg, P.A., Oppenheimer, D., 1985. FPFIT, FPPLOT and FPPAGE: Fortran computer programs for calculating and displaying earthquake fault-plane solutions. US Geological Survey Open-File Report 85-739, 25 pp.]. The majority of these mechanisms indicate normal-faulting movement with a more or less pronounced strike-slip component. Some quasi-pure strike-slip events also occurred, especially in the deeper part of the stimulated rock volume, at more than 5 km depth. Although we found a double-couple solution for all events, we tried to observe and quantify the proportion of the non-double-couple (NDC) component in the seismic moment tensor for several microseisms from the 2003 data. The study shows that the NDC is higher for the events in the vicinity of the injection well than for the events far from the well. We used the method of Rivera and Cisternas [Rivera, L., Cisternas, A., 1990. Stress tensor and fault-plane solutions for a population of earthquakes. Bull. Seismol. Soc. Am. 80, 600-614.] to perform the inversion of the deviatoric part of the stress tensor from P-wave polarities. This method was applied to different datasets from the 2000 test, taken from the shallower and deeper parts of the stimulated region. The results show a stable, horizontal, NE-SW-oriented trend of the minor horizontal stress, but a rotation of the major stress from a sub-vertical direction (top of the stimulated region) to a sub-horizontal one (bottom of the stimulated region). This implies a change from a normal-faulting to a strike-slip regime, in agreement with our fault-plane solutions. Finally, we applied the stress components to the nodal planes of several events and were able to determine their fault plane and obtain a 3D image of the fracture network, based on real data
    • …
    corecore