203 research outputs found

    Finite-thrust transfer in the two and three body problems Final report

    Get PDF
    Computer program for optimal finite thrust transfer between two orbit

    Quasilinearization program for determining optimum finite-thrust transfers between inclined orbits

    Get PDF
    Quasi-linearization program for boundary value problem of minimum fuel orbital transfe

    Structural basis for the nuclease activity of a bacteriophage large terminase

    Get PDF
    The DNA-packaging motor in tailed bacteriophages requires nuclease activity to ensure that the genome is packaged correctly. This nuclease activity is tightly regulated as the enzyme is inactive for the duration of DNA translocation. Here, we report the X-ray structure of the large terminase nuclease domain from bacteriophage SPP1. Similarity with the RNase H family endonucleases allowed interactions with the DNA to be predicted. A structure-based alignment with the distantly related T4 gp17 terminase shows the conservation of an extended β-sheet and an auxiliary β-hairpin that are not found in other RNase H family proteins. The model with DNA suggests that the β-hairpin partly blocks the active site, and in vivo activity assays show that the nuclease domain is not functional in the absence of the ATPase domain. Here, we propose that the nuclease activity is regulated by movement of the β-hairpin, altering active site access and the orientation of catalytically essential residues

    Bioderived dyes-mediated vat photopolymerization 3D printing of chitosan hydrogels for tissue engineering

    Get PDF
    The importance of 3D printable hydrogels is constantly increasing in the field of tissue engineering, due to their characteristic structure and similarity with the human body extracellular matrix (ECM). Herein, Quinizarin-based bioderived photoactive dyes were employed for the 3D printing of methacrylated chitosan by vat pho-topolymerization (VPP). Dyes are commonly needed in VPP to obtain good resolution avoiding the light scattering in the vat, here the bioderived molecules had further utility granting the printability with good resolution while acting both as photosensitizers and fillers/crosslinkers. Defined and detailed architectures in the range of millimetres were obtained with low printing times showing for the first time the possibility to obtain all-chitosan 3D structures with suspended features by Digital Light Processing (DLP), which is a form of vat photopolymerization; such a result is not achievable without the quinizarin-derived dyes. The same structures were achieved with an opti-mized concentration of poly(ethylene glycol) diacrylate, as a comparison, enhancing the resolution. For all the formulations, the important feature to obtain the gel printability (considering reactiveness, viscosity, shear thinning behaviour, mechanical properties and stability) were evaluated. The hydrogels mechanical character-ization and swelling properties were also tested and reported. Lastly, the possible application in tissue engi-neering was also evaluated through cell proliferation analysis over samples, including metabolic activity and DNA contempt assays. The use of such bioderived photoactive molecules that simultaneously act as photosensitizer enhancing the ink reactivity, as dye improving the definition of the final structures and as filler/crosslinker increasing the me-chanical stability, could represent a valuable route for the DLP printing of soft hydrogels

    Regulation by interdomain communication of a headful packaging nuclease from bacteriophage T4

    Get PDF
    In genome packaging by tailed bacteriophages and herpesviruses, a concatemeric DNA is cut and inserted into an empty procapsid. A series of cuts follow the encapsidation of each unit-length ‘headful’ genome, but the mechanisms by which cutting is coupled to packaging are not understood. Here we report the first biochemical characterization of a headful nuclease from bacteriophage T4. Our results show that the T4 nuclease, which resides in the C-terminal domain of large ‘terminase’ gp17, is a weak endonuclease and regulated by a variety of factors; Mg, NaCl, ATP, small terminase gp16 and N-terminal ATPase domain. The small terminase, which stimulates gp17-ATPase, also stimulates nuclease in the presence of ATP but inhibits in the absence of ATP suggesting interdomain crosstalk. Comparison of the ‘relaxed’ and ‘tensed’ states of the motor show that a number of basic residues lining the nuclease groove are positioned to interact with DNA in the tensed state but change their positions in the relaxed state. These results suggest that conformational changes in the ATPase center remodel the nuclease center via an interdomain ‘communication track’. This might be a common regulatory mechanism for coupling DNA cutting to DNA packaging among the headful packaging nucleases from dsDNA viruses

    Job stress and job satisfaction of physicians, radiographers, nurses and physicists working in radiotherapy: a multicenter analysis by the DEGRO Quality of Life Work Group

    Get PDF
    Background Ongoing changes in cancer care cause an increase in the complexity of cases which is characterized by modern treatment techniques and a higher demand for patient information about the underlying disease and therapeutic options. At the same time, the restructuring of health services and reduced funding have led to the downsizing of hospital care services. These trends strongly influence the workplace environment and are a potential source of stress and burnout among professionals working in radiotherapy. Methods and patients A postal survey was sent to members of the workgroup "Quality of Life" which is part of DEGRO (German Society for Radiooncology). Thus far, 11 departments have answered the survey. 406 (76.1%) out of 534 cancer care workers (23% physicians, 35% radiographers, 31% nurses, 11% physicists) from 8 university hospitals and 3 general hospitals completed the FBAS form (Stress Questionnaire of Physicians and Nurses; 42 items, 7 scales), and a self-designed questionnaire regarding work situation and one question on global job satisfaction. Furthermore, the participants could make voluntary suggestions about how to improve their situation. Results Nurses and physicians showed the highest level of job stress (total score 2.2 and 2.1). The greatest source of job stress (physicians, nurses and radiographers) stemmed from structural conditions (e.g. underpayment, ringing of the telephone) a "stress by compassion" (e.g. "long suffering of patients", "patients will be kept alive using all available resources against the conviction of staff"). In multivariate analyses professional group (p < 0.001), working night shifts (p = 0.001), age group (p = 0.012) and free time compensation (p = 0.024) gained significance for total FBAS score. Global job satisfaction was 4.1 on a 9-point scale (from 1 – very satisfied to 9 – not satisfied). Comparing the total stress scores of the hospitals and job groups we found significant differences in nurses (p = 0.005) and physicists (p = 0.042) and a borderline significance in physicians (p = 0.052). In multivariate analyses "professional group" (p = 0.006) and "vocational experience" (p = 0.036) were associated with job satisfaction (cancer care workers with < 2 years of vocational experience having a higher global job satisfaction). The total FBAS score correlated with job satisfaction (Spearman-Rho = 0.40; p < 0.001). Conclusion Current workplace environments have a negative impact on stress levels and the satisfaction of radiotherapy staff. Identification and removal of the above-mentioned critical points requires various changes which should lead to the reduction of stress

    Differential Regulation of the Variations Induced by Environmental Richness in Adult Neurogenesis as a Function of Time: A Dual Birthdating Analysis

    Get PDF
    Adult hippocampal neurogenesis (AHN) augments after environmental enrichment (EE) and it has been related to some of the anxiolytic, antidepressant and neuroprotective effects of EE. Indeed, it has been suggested that EE specifically modulates hippocampal neurogenic cell populations over the course of time. Here we have used dual-birthdating to study two subpopulations of newborn neuron in mice (Mus musculus): those born at the beginning and at the end of enrichment. In this way, we demonstrate that while short-term cell survival is upregulated after an initial 1 week period of enrichment in 2 month old female mice, after long-term enrichment (2 months) neither cell proliferation nor the survival of the younger newly born cell populations are distinguishable from that observed in non-enriched control mice. In addition, we show that the survival of older newborn neurons alone (i.e. those born at the beginning of the enrichment) is higher than in controls, due to the significantly lower levels of cell death. Indeed, these parameters are rapidly adjusted to the sudden cessation of the EE conditions. These findings suggest both an early selective, long-lasting effect of EE on the neurons born in the initial stages of enrichment, and a quick response when the environment again becomes impoverished. Therefore, EE induces differential effects on distinct subpopulations of newborn neurons depending on the age of the immature cells and on the duration of the EE itself. The interaction of these two parameters constitutes a new, specific regulation of these neurogenic populations that might account for the long-term enrichment's behavioral effects

    The Staphylococcus aureus Protein Sbi Acts as a Complement Inhibitor and Forms a Tripartite Complex with Host Complement Factor H and C3b

    Get PDF
    The Gram-positive bacterium Staphylococcus aureus, similar to other pathogens, binds human complement regulators Factor H and Factor H related protein 1 (FHR-1) from human serum. Here we identify the secreted protein Sbi (Staphylococcus aureus binder of IgG) as a ligand that interacts with Factor H by a—to our knowledge—new type of interaction. Factor H binds to Sbi in combination with C3b or C3d, and forms tripartite Sbi∶C3∶Factor H complexes. Apparently, the type of C3 influences the stability of the complex; surface plasmon resonance studies revealed a higher stability of C3d complexed to Sbi, as compared to C3b or C3. As part of this tripartite complex, Factor H is functionally active and displays complement regulatory activity. Sbi, by recruiting Factor H and C3b, acts as a potent complement inhibitor, and inhibits alternative pathway-mediated lyses of rabbit erythrocytes by human serum and sera of other species. Thus, Sbi is a multifunctional bacterial protein, which binds host complement components Factor H and C3 as well as IgG and β2-glycoprotein I and interferes with innate immune recognition
    corecore