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FOREWORD

This report constitutes the final technical document required under
Contract NAS8-21077, Optimum Finite Thru: t Orbital Transfer Study. The
work described herein was performed by the authors at the Space Division of
North American Rockwell Corporation during the period commencing on
February 7, 1967 and ending on March 8, 1969.

Please note that this report and its attachments supersede all previous
reports under the contract. These constitute a summary of extensive con-
tractual studies which are documented in detail in the following four reports:

SD 69-4	 Quasilinearization Program for Determining Optimum
Finite-Thrust Transfers Between Inclined Orbits

SD 69-3	 Program for Optimization of Two-Impulse Transfers
by Contouring and Steep Descent

SD 68-1055 Generalized Quasilinearization Routines for Solving
Nonlinear Boundary-Value Problems

SD 68-309	 Two-Impulse Transfer in the Three-Body Problem

-
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ABSTRACT

The results obtained under the study contract NAS8-21077 are
summarized. These studies have involved the use of the quasilinearization
technique for the solution of two-point boundary value problems concerned
with orbital transfer in the two- and three-body problems. It was possible
to obtain optimal finite-thrust transfers between any two elliptical non-
coapsidal inclined orbits about a single attracting center. The procedure
has been completely checked out in the FORTRAN H programming language
using an IBM System 360, Model 65, digital computer. It was found that
successful quasilinearization solution of this "bang-bang" control problem,
in most cases, required a good arp iori knowledge of the complete time
histories of the state variables and Lagrange multipliers. Methods were
therefore developed for predicting the primer vector time history with an
accuracy of about one percent.

The quasilinearization technique was also applied to the computation
of impulsive transfers between given terminals in a given time in the
three-body problem. The resulting computer program is in an essentially
completed state and is available for studies. The description of the program
and the details for operating it are also documented and available.

In order to extend the above work, the authors obtained preliminary
results concerning the development of a program for computing finite-thrust
transfer in the three-body problem. For the three-body case, the problem
has been formulated in rotating coordinates, and the Jacobian matrix has
been derived and programmed in preparation for use in a three-body
finite-thrust quasilinearization optimization computation.

-
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I. INTRODUCTION

During the past ten years, the authors have participated in a series of
contractual studies of optimal orbital transfer and rendezvous. Under the
initial contract, NAS8-4, work consisted of formulation and parameter
studies involving coplanar two-impulse transfer (References 1, 2, and 3).
The second contracted effort (NAS8-1582) was devoted to developing
numerical methods for finding the absolute minimum two-impulse transfers
between arbitrary non-coplanar non-coapsidal elliptical orbits. This work,
which is documented in References 4 through 13, led to several computa-
tional methods for solving slzch problems. The third contract in this series
(NAS8-5211) produced several refinements to the previously successful
numerical techniques (References 14 and 15). It also led to the development
of a steep-descent numerical optimization program (References 16 and 17).
Using this numerical program, it was possible to conduct a number of
studies which have now been published (References 17 through 20). This
contract also produced a variational formulation of the finite-thrust optimum
orbital transfer problem (Reference 21). The formulation was programmed
for solution using an ordinary Newton-Raphson convergence technique which
was later found to be inadequate for this extremely sensitive problem. The
results of this third contract are summarized in Reference 22.

Under the fourth contract (NAS8-20238), effort was concentrated upon
solving the two-dimensional finite-thrust orbital transfer problem and upon
an investigation of impulsive transfer in the three-body problem. During the
course of the study, both of these problems were satisfactorily solved by
employing a mathematical technique known as quasilinearization
(References 23 through 26). The results of this fourth contract are summa-
rized in Reference 27.

This report summarizes the results of the latest contract in this series
(NAS8-21077). Under this contract, work has been primarily concerned
with the development of numerical programs for computing optimal finite-
thrust transfers in the two-body problem, two-impulse transfers in the
three-body problem, and optimal finite-thrust transfers in the three-body
problem (References 28 through 31).

- 1 -
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In order to make the complete computer program documentation
beneficial to a wide number of diverse users, the authors have chosen to
divide it into the following four reports:

Quasilinearization Program for Determining Optimum Finite-Thrust
Transfers Between Inclined Orbits, .SD 69-4 (Reference 28).

Program for Optimization of Two-Impulse Transfers by Contouring
and Steep Descent, SD 69-3 (Reference 29).

Generalized Quasilinearization Routines for Solving Nonlinear
Boundary-Value Problems, SD 68-1055 (Reference 30).

Two-Impulse Transfer in the Three-Body Problem, SD 68-309
(Reference 31).

Because of this logical subdivision, it is possible to offer prospective
users of specific parts of the program only that documentation that they
require. For instance, a user who wishes to apply the generalized quasi-
linearization subroutine to a heat transfer problem will only require
Reference 30.

Similarly, the subroutine package used to provide data for the initial
iterate computation to the finite-thrust program may be employed separately
to study two-impulse orbital transfer.

-2-
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II. OPTIMAL FINITE-THRUST TRANSFERS IN
THE TWO-BODY PROBLEM

INTRODUCTION

The objective of this task was to investigate methods for computing
finite-thrust transfers between any two orbits about a single attracting
center in three-dimensional space. The authors are pleased to report the
successful completion of this task, and the development of an IBM System 360
FORTRAN H digital computer program for computing the optimal
trajectories. The complete program has been documented in References 28,
29, and 30.

For a number of years, the authors have addressed themselves to the
general problem of obtaining numerical solutions to the two-point boundary
value problems associated with optimal orbital transfer and rendezvous.
Significant new results, which are reported here, involve techniques for
obtaining solutions to the set of 14 discontinuous non-linear differential
equations which specify the optimal one- or two-burn fixed-time finite-thrust
transfer between any two orbits about a single attracting center in three-
dimensional space. It has been found that solution of this "bang-bang" con-
trol problem requires the power of the quasilinearization technique, and, in
most cases, requires also a good arp iori estimate of the complete time
histories of the state variables and Lagrange multipliers. Methods have
therefore been developed for predicting the primer vector time history with
an accuracy of about one percent. This information, in turn, allows _a rp iori

specification of the proper control variables for vehicle steering and thrust
initiation and termination. Of critical importance to the above formulation
is an accurate knowledge of an optimum two-impulse maneuver. The compii-
tational techniques for obtaining the first iterate and for controlling the
computational procedure are of prime importance to the effective utilization
of the quasilinearization procedure. The numerous equations and mathe-
matical details of the complete method are not included in this descriptive
summary. However, they may be found in complete detail in Reference 28,
which constitutes the finite -thrust computer program documentation.

SIGNIFICANT NEW RESULTS

The initial iterates for the Lagrange multipliers are derived from an
optimum t%vo-impulse transfer which is obtained using the program of
Reference 29. The multipliers that correspond to velocity and position,

-3-
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i.e. , the primer ver;or and its derivative, are obtained for the coasting arc
of the transfer orbit by assuming that the Hamiltonian of the system is zero
(time-open problem) and that the direction of the primer gives the impulsive
thrust directions used for both burns. The values of the Lagrange multipliers
for position and velocity along the initial and final orbits then are inferred
from the continuity conditions required at the corners (impulse points).
These are joined over the two-burn intervals by a. straight line or by a
cubic. This portion of the procedure must determine the ii,itial time
histories ,f the very sensitive control parameters. The procedure for
extracting this information, therefore, contains several innovations which

are reported in Reference 28.

The technique of quasilinearization, as documented in Reference 30, is
now used to find initial boundary conditions which also satisfy the required
final boundary conditions. An important aspect of the computer program is
the management r!,: the extremely sensitive switching times. Full changes in
these times as call(d for by the program are not allowed until the multipliers
conta;.r. mar-- meaningful information than the initial iterate. (See Refer-
ence, ?6 or 28.

A-3 ail example of the c7.cetlenc starting iterates obtained by the above

techniq ue:-;, the reader is .:::Rcted to Figures 1 through 7. Figure 1 depicts

an optimal f ; .site-thrust transfer between two inclined elliptical orbits. The
table at ti,e tcp of r figure 1 lists the parameters of the two-impulse transfer
which was used as a starting iterate.

Figures 2 through 7 are a series of computer-generated graphs which
show the type of results obtained. On each of the graphs there is a solid
line which represents the converged solution for the variable. The initial
time history is plotted on the same graph as a series of points indicated by
the symbol "+. " Note the close agreement. Especially, note the accuracy
of the initial iterate in Figures 3, 4, and 5. These particular parameters
are extremely sensitive to small deviation from the optimal impulsive
s oluti on.

As one might expect, these superior initial iterates led to convergence
properties which were significantly improved over those reported in Refer-
ence 26. In fact, certain cases which were previously troublesome or
non-convergent responded quite favorably. These results further sub€tan•-
tiate the power of quasilinearization for solving extremely complicated and
sensitive multipoint boundary-value problems. However, they also indicate
the care and detail that is required for consistent success.

The above work led to the development of a computer program which
was used to generate a number of interesting new comparisons of the re:;ults

- 4 -
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Figure 1. Schematic Diagram of the Orbits
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Figure 2. Derivative of the Out-of-Plane Angle - Initial and
Final Values Compared
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of finite-thrust and impulsive orbital transfer. Good comparison of AV
requirements were obtained for a wide range of initial thrust-to-weight
ratios—including very-low-thrust cases. For example, good results were
obtained for an Earth-to-Mars transfer when the thrusting time exceeded
10 days. These very brief parameter studies exposed some of the differ-
ences and similarities between finite-thrust and impulsive transfer between
inclined orbits (inclination varied from zero to 80 degrees).

Investigations of two-impulse minima that were not absolute minima
indicated that some could be replaced with three or four finite-duration
burns which required less total OV to complete the transfer. When this
situation occurred, its existence was always indicated by the behavior of
the primer vector in the initial iterate. This was a new, significant, and
rather unexpected result. As a consequence, it is clear that the behavior of
the primer length in the initial iterate, or of the switching function which is
derived directly from it, is an indicator of whether or not the program will
find a finite-thrust optimum. When improper behavior is found, the search
by the quasilinearization technique can be stopped.

DOCUMENTATION OF THE TWO-BODY FINITE-THRUST PROGRAM

Because of the extreme complexity of the two-body finite-thrust
program, the computer program documentation was divided into three
separate logical segments. The first segment contains all of the detailed
two-impulse orbital transfer optimization calculations which are used to
obtain initial conditions for the finite-thrust program. These routines were
segregated into a separate computer program that can be used by numerous
individuals who wish to study only the two-impulse transfer maneuver.
Accordingly, this collection of subroutines has been documented in Refer-
ence 29, Program for Optimization of Two-Impulse Transfers by Contouring
and Steep Descent.

Similarly, the authors' generalized quasilinearization subroutine,
wlAch forms a vital part of the finite-thrust program, has numerous applica-
tions to problems outside the field of orbital mechanics. For this reason,
it and its related subroutines are documented separately in Reference 30,
Generalized Quasilinearization Routines for Solving Non-Linear Boundary-
Value Problems. Because of this logical subdivision, the quasilinearization
program can be made available as a significant example of technology
utilization. It will therefore find uses in many diverse areas outside direct
NASA applications.

The third segment contains the details of the finite-thrust computation
procedure. That report, Quasilinearization Program for Determining
Optimum Finite-Thrust Transfers Between Inclined Orbits, documents the

-1?-
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detailed equations and mathematical procedures required to solve the
finite-thrust problem. It also contains a complete description of the
computer program, an example of the program's use, and the detailed
FORTRAN H program listings.

SUGGESTED PARAMETRIC STUDIES

As noted, the program has been thoroughly verified by computing a
number of critical and/or limiting cases. The program has also been
checked by performing several parametric studies of the effect of changing
the thrust-to-weight ratio and of varying the inclination. The results of
these initial applications suggested that the program is indeed a valuable
tool for investigating finite-thrust transferz, between orbits and that it should
be employed extensively for numerous parameter studies.

For the most part, parametric studies can be made easily with mini-
mal changes to the data cards between computer runs. An outline of
possible studies is given below. It is divided into two parts: the primary
parametric study types that might be considered, and the orbit pair type
that might be considered for each study type. In addition, there is a brief
discussion of the one problem that is known to arise.

Outline for Suggested Finite-Thrust Transfer Studies

A. Primary parametric studies of significance

1. Effects of varying the initial thrust-to-weight ratio on a
wide range of orbit-pair types

2. Effects of varying inclination at very low values, moderate
values and high values including retrograde cases

B. Classification scheme for orbit pairs to be considered for each
of these studies

1. Circle -to -circle

2. Circle-to-ellipse

a. Intersecting type (if rotated to a single plane)

b. Non-intersecting (if rotated to a single plane)

C. Large, highly eccentric ellipses (e.g. , translunar
orbit)

- 13 -
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3.	 Ellipse-to-ellipse

a. Intersecting type (if rotated to a single plane)

b. Non-intersecting type (if rotated to a single plane)

4. Special mathematical cases

a. Nearly tangent orbits with one-impulse transfer as
optimum (coplanar)

b. Non-coplanar cases where one impulse is very much
smaller than the other

5. Special physical cases

a. Finite-thrust transfers from earth's orbit to that of
another planet or an asteroid and vice versa

b. Finite-thrust transfer from earth orbit to a translunar
orbit

Significant Unanswered Questions

The problem of a very small burn at either the first or second
impulse point remains unresolved if the orbits are inclined (item 4b). For
some pairs of inclined orbits for which the impulsive program finds that one
of the impulses is negligible compared to the other, no converging solutions
were found. The initial primer behavior was unsatisfactory; that is, it
appeared to call for a burn midway between those of the impulsive points
selected. The possibility of varying this initial primer history by varying
the impulsive starting point or ending point has been investigated. Some
changes have been observed in the tests to date, but no conclusions have
been reached. Another possible answer is that the thrust direction of the
negligible impulse, which is required for the multiplier initial estimate
procedure, and which is almost immaterial to the impulse computation, may
be in error. In any case, the results appear to indicate, once more, the
requirement for very good impulsive optimization data if optimum finite-
thrust transfers are to be found for specially sensitive cases.

The problem of a very small burn at either the first or second impulse
point is, essentially, the problem of the existence of optimal one-burn trans-
fers between inclined orbits. Although some techniques have been developed
to handle this problem, no successful solutions are known to have been
obtained. In fact, the present computational results suggest that optimal

- 14 -
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single-burn transfers between inclined orbits may not exist. The numerical
experiments used to test this hypothesis involved finding an optimal single-
impulse transfer and then attempting to converge upon its finite-thrust
counterpart. As noted above, this was not successful. However, it may be
possible to isolate such maneuvers from initial conditions obtained in some
other manner. This is an area that requires further investigation.

- 15 -
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III. TWO-IMPULSE TRANSFER IN
THE THREE-BODY PROBLEM

Suppose it is desired that a spaceship on some orbit in earth-moon
space transfer to a new orbit by means of a two-impulse maneuver. While
this problem is topologically similar to two-impulse transfer in the two-body
problem, there are two sigrificant differences from the computational and
analytic points of view. In the first place, the terminal orbits are not
generally cyclic, and points along them cannot be represented by five orbital
elements and an angle. The six components of position and velocity are used
instead. The second major difference is that one cannot describe the orbits
between two fixed points as a known function of any one parameter. In
general, there is a single infinity of orbits through two given points in a
single -attracting -center gravitational field; therefore, in the two-body case
one can choose, for example, the seinilatus rectum of the transfer orbit as
the parameter to generate the orbits. For this case, it is possible to
compute the orbit, the velocities at both ends, and the impulses.

In the thrA°-body case, it was decided to span the infinity of orbits by
using time-ti-transfer as a parameter. One must specify also the general
shape of this path; that is, for example, counterclockwise around the earth
to clockwiEe around the moon, as in Figure 8. Just as in the two-body case,
multiple orbits in the system are not considered. It is a major problem to
obtain the orbit, and the velocities and impulses at both ends. In fact, the
aim of this portion of the contractual work was to provide a computer pro-
gram to obtain these quantities. That is, from the given departure point
(Bo in Figure 8), the given arrival point (BT in Figure 8), the given orbit
shape and the given time interval (T), the program was to determine the
transfer orbit trajectory, the velocities at both ends, and the impulses. The
type of motion to be described is known as that of the reduced three-body
problem. That is, the third body whose motion is being investigated does not
affect the motion of the two primary bodies which may move in either circu-
lar or elliptical orbits about their common center of mass.

The above summarized formulation has resulted in a double-precision
computer program which uses quasilinearization to find impulsive transfers
between given terminals in a given time in the reduced three-body problem
(Reference 31). The program accepts a wide variety of input trajectory
shapes and coordinate systems, is designed to be used in impulsive transfer
parameter studies, and has been shown to give accurate solutions with con-
siderable speed. In a typical usage it has been shown to yield meaningful
results quickly when applied to the problem of reaching a Lagrange point
from a translunar trajectory or from an earth orbit.

- 16 -
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Figure 8. Rotating Coordinate System

Because cf its length and the fact that it is really a separate program,
it has been documented separately in Reference 31, Two-Impulse Transfer
in the Three-Body Problem. In that document, the program and its usage
are described in detail. Some preliminary results showing excellent con-
vergence properties and illustrating its application to an impulsive transfer
problem are also presented.

This double-precision computer program represents the first neces-
sary step in a longer-range problem which is the numerical analysis of
two-impulse and two-burn transfers in earth-moon space. Now that it has
been developed, systematic studies of two-impulse transfers can be under-
taken. The program will also provide the vital initial approximations
required for the computation of optimal finite-thrust transfers in the three-
body problem.

- 17 -
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IV. OPTIMUM FINITE-THRUST TRANSFERS IN
THE THREE-BODY PROBLEM

INTRODUCTION

The task of adapting the quasilinearization technique for finding opti-
mum finite-thrust transfers between three-dimensional orbits around a
single attracting center has been successfully completed. It is therefore
proper to begin to develop computer programs which will use quasilineariza-
tion to find optimal finite-thrust maneuvers in the reduced three-body
problem. It is believed that this can be accomplished in a straightforward
manner and that it will be advantageous to make use of a single set of
equations for the entire trajectory. For this reason it seems best to use
the rotating system of coordinates which is centered at the barycenter and
which has the earth-moon orbit plane as the xy plane with the x-axis
directed toward the moon at all times (Figure 8). The formulation of the
equations for the optimum finite-thrust maneuver in this system is given in
the following section. It is assumed that the earth-moon system is in an
elliptic orbit, but most of the checkout of the computer program will deal
with the circular-orbit case. The new program will be built up in sections
which optimize individual fragments of the total trajek tory, but it is planned
that the sections will eventually be combined into a single procedure.

There are three essential parts to the quasilinearization procedure as
applied to an optimization program such as this which utilizes the Denbow
formulation. One is the obtaining and programming of the Jacobian matrix,
the partial derivatives of the differential equations of motion. This has been
accomplished, but the program has not been tested.

The second essential part consists of providing for the program a
scheme for choosing an initial time history that is near enough to the final
optimum so that the prigram will converge upon it. The experience in the
two-body formulation indicates that this capability is important, if not
crucial. It is likely that this phase of the problem for the three-body case
will be the most difficul' and time-consuming portion.

The third part involves the management of the boundary conditions at
staging and switching points. It is believed that the introduction of staging
into the procedure will offer no significant difficulties in programming. The
ability to stop and to restart the integration procedure is a feature of the NR
quasilinearization routine (Reference 30) which was introduced in order to
allow changes in integration step size. In the two-body finite-thrust

- 18 -
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problem, techniques for using this feature at switching points were
developed. The natures of switching and staging points appear to be compu-
tationally similar; thus, only minor additional programming complexity is
required to include the additional corner conditions for staging as well as
those for switching.

FORMULATION OF THE OPTIMUM FINITE-THRUST PROBLEM FOR
THE REDUCED THREE-BODY SYSTEM

The equations of motion of the spacecraft may be taken from Equaticn 7
of Reference 31 and require only the addition of a thrust. Thus, we write

X = g(X, t) + a

m = -^

where

X T = (x, y, it x, y, z) or (u, v, w, x, y, z)

and

aT = 
cR	

l
m (q l , q2 , q3 0 0 , 0, 0)

Thus q is the unit vector along the thrust direction.

We choose to optimize the final mass, and we may write the
Hamiltonian as

H = XT ( g + a) - X7 R

In the application of the Pontryagin Maximum Principle the switching
function, k, is developed and it may be expressed as

k = m = X7

where

A =VX 1 2 + X2 2 + x`32,
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The value of P is allowed to be either zero or pm and the choice is governed
by k, that is, for k < 0, p = 0, while for k > 0, .6 = pm. In addition the
vectors A and q are parallel. The situation k = 0 is assumed not to occur
over any extended interval of time.

In developing the computation procedure, we have replaced the
variable A7 with k as was done in the two-body cases. The differential
equations for the 14 variables u, v, w, x, y, z, m, ^ 1 1, k 2, k 3, ,̂4, ^5, 4,
and k are:

2	 µG (x - { 1 - µ) D)	 (1 - µ) G (x + µD) cpXI
u = 2wv + w x + wy -	 3	 3	 + mAs	 r

2	 µGy (I - µ) Gy c pk2v = -2wu+w y- wx- 
3 -	 3	 + A

s	 r

µGz (1 - µ) Gz c 
pk3

w	
3	 3	 + A

s	 r

x =u

y=v

z = w

M = -R

X 1 = -A4 + 2W X2

X2=-X5-2wk1

^ 3 - 6

	

2 µG (1 - µ) G 34G	 2 3 (1 µ) G (x + µD) 2
^4 = -^1 w - 3 -	 3 +—^ (x - (1 - µ) D) +

s	 r	 s	 r

-k 34G (x - (1 - µ) D)y + 3 (1 - µ) G (x+ µD)y - w
2	

s 
5	

r 
5
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_ 134G[x-(1-µ)]Az3(1-µ)G(x+µD)z
3	 5

+	 5
s	 r

34G [x - (1 - µ) D]y + 3 (1 - µ) G (x + µD)y + w
5 =	 8 	

r5

-	 w 2 - t.G - (1 - µ) G + 3µGy2 + 3 (1 - µ) Gy2
2	 3	 s	 5	 5

s	 r	 s	 r

-^ +3µGyz + 3(1-µ)Gyz
3	 s	 r5 	5

^6 = - ^ 1 [25 (x - (1 - µ) D) z + 3 (1 - µ) 5(x + µD) z

s	 r

-^ 3µGyz + 3(1-µ)Gyz
2	 5	 5s	 r

-A - µG - (1 - µ)G + 3µG z 2 + 3(1 -µ)G z2
3 3	 3 —^—s	 r	 s	 r

lc= _ mn (x1x4+x2x5 +^,3x6)

The task of finding the Jacobian for this set of variables is somewhat
tedious, but it is easily managed. It has been done, and the resulting
equations have been programmed in a subroutine (JACOB) for future use in
the three-body finite-thrust optimization procedure.

In case the earth-moon system is assumed to be in a circular orbit, w
is constant, the terms in w are zero, and the set of differential equations
does not contain the time. The Hamiltonian, H, will be constant in this
case. However, if the moon and earth are assumed to move in elliptical
orbits, the w terms are required. H will not be constant. The computer
formulation envisaged will not make use of the fact that H is constant for the
circular orbit case; rather its constancy for circular orbits will be required
as one check on the formulation.
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V. CONCLUSIONS

This contracted effort resulted in the completion of several quasilin-
ea.rization computer programs for investigating optimal impulsive and
finite-thrust maneuvers in the two- and three-body problems. These valuable
numerical tools have been fully documented and are now available for use in
extensive parametric studies. It is believed that through judicious use of
these programs, it will be possible to discover significant new properties of
optimal transfers. For example, optimal transfers between the Lagrange
points have never been studied in detail. The tools to perform such a study
are now ready.

This prior experience with numerous computational techniques and the
results presented here suggest that it would be wise to continue this work.
Much could be done with the present programs, and of course they can be
extended and modified to consider rendezvous and/or numerous more
advanced problems. In particular, many of the principal ingredients for the
complete development of the optimal finite-thrust: three-body computer pro-
gram are now ready for assembly and checkout to begin.
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