176 research outputs found

    New method to detect size, timespan and flow in nanoplasmonic fusion

    Full text link
    The differential Hanbury-Brown and Twiss analysis is widely used in astrophysics and in relativistic heavy ion physics to determine the size and timespan of emitted particles. Here we propose to adopt theis method for laser induced nanoplasmonic inertial confinement fusion. The aim is to determine the parameters of emitted Deuterium and Helium4^4 nuclei at the ignition of the fusion target. In addition of spatial volume and timespan the method is able to detect specific space-time correlation patterns, which are connected to collective flow at ignition

    Comparative study on the uniform energy deposition achievable via optimized plasmonic nanoresonator distributions

    Get PDF
    Plasmonic nanoresonators of core-shell composition and nanorod shape were optimized to tune their absorption cross-section maximum to the central wavelength of a short pulse. Their distribution along a pulse-length scaled target was optimized to maximize the absorptance with the criterion of minimal absorption difference in between neighbouring layers. Successive approximation of layer distributions made it possible to ensure almost uniform deposited energy distribution up until the maximal overlap of two counter-propagating pulses. Based on the larger absorptance and smaller uncertainty in absorptance and energy distribution core-shell nanoresonators override the nanorods. However, optimization of both nanoresonator distributions has potential applications, where efficient and uniform energy deposition is crucial, including phase transitions and even fusion

    Calibration of dosemeters used in mammography with different X ray qualities: Euromet Project No. 526

    Get PDF
    The effect of different X ray radiation qualities on the calibration of mammographic dosemeters was investigated within the framework of a EUROMET (European Collaboration in Measurement Standards) project. The calibration coefficients for two ionization chambers and two semiconductor detectors were established in 13 dosimetry calibration laboratories for radiation qualities used in mammography. They were compared with coefficients for other radiation qualities, including those defined in ISO 4037-1, with first half value layers in the mammographic range. The results indicate that the choice of the radiation quality is not crucial for instruments with a small energy dependence of the response. However, the radiation quality has to be chosen carefully if instruments with a marked dependence of their response to the radiation energy are calibrate

    Crater Formation and Deuterium Production in Laser Irradiation of Polymers with Implanted Nano-antennas

    Full text link
    Recent validation experiments on laser irradiation of polymer foils with and without implanted golden nano-particles are discussed. First we analyze characteristics of craters, formed in the target after its interaction with laser beam. Preliminary experimental results show significant production of deuterons when both the energy of laser pulse and concentration of nano-particles are high enough. We consider the deuteron production via the nuclear transmutation reactions p+Cd+Xp+C\rightarrow d+X where protons are accelerated by Coulomb field, generated in the target plasma. We argue that maximal proton energy can be above threshold values for these reactions and the deuteron yield may noticeably increase due to presence of nano-particles.Comment: 9 pages, 4 figure

    Deterministic and stochastic descriptions of gene expression dynamics

    Full text link
    A key goal of systems biology is the predictive mathematical description of gene regulatory circuits. Different approaches are used such as deterministic and stochastic models, models that describe cell growth and division explicitly or implicitly etc. Here we consider simple systems of unregulated (constitutive) gene expression and compare different mathematical descriptions systematically to obtain insight into the errors that are introduced by various common approximations such as describing cell growth and division by an effective protein degradation term. In particular, we show that the population average of protein content of a cell exhibits a subtle dependence on the dynamics of growth and division, the specific model for volume growth and the age structure of the population. Nevertheless, the error made by models with implicit cell growth and division is quite small. Furthermore, we compare various models that are partially stochastic to investigate the impact of different sources of (intrinsic) noise. This comparison indicates that different sources of noise (protein synthesis, partitioning in cell division) contribute comparable amounts of noise if protein synthesis is not or only weakly bursty. If protein synthesis is very bursty, the burstiness is the dominant noise source, independent of other details of the model. Finally, we discuss two sources of extrinsic noise: cell-to-cell variations in protein content due to cells being at different stages in the division cycles, which we show to be small (for the protein concentration and, surprisingly, also for the protein copy number per cell) and fluctuations in the growth rate, which can have a significant impact.Comment: 23 pages, 5 figures; Journal of Statistical physics (2012

    Criminal Justice Reform as HIV and TB Prevention in African Prisons

    Get PDF
    Katherine Todrys and Joseph Amon argue for criminal justice system reforms in sub-Saharan Africa to reduce HIV and TB transmission in prisons and to guarantee detainees' human rights and health

    Mathematical Identification of Critical Reactions in the Interlocked Feedback Model

    Get PDF
    Dynamic simulations are necessary for understanding the mechanism of how biochemical networks generate robust properties to environmental stresses or genetic changes. Sensitivity analysis allows the linking of robustness to network structure. However, it yields only local properties regarding a particular choice of plausible parameter values, because it is hard to know the exact parameter values in vivo. Global and firm results are needed that do not depend on particular parameter values. We propose mathematical analysis for robustness (MAR) that consists of the novel evolutionary search that explores all possible solution vectors of kinetic parameters satisfying the target dynamics and robustness analysis. New criteria, parameter spectrum width and the variability of solution vectors for parameters, are introduced to determine whether the search is exhaustive. In robustness analysis, in addition to single parameter sensitivity analysis, robustness to multiple parameter perturbation is defined. Combining the sensitivity analysis and the robustness analysis to multiple parameter perturbation enables identifying critical reactions. Use of MAR clearly identified the critical reactions responsible for determining the circadian cycle in the Drosophila interlocked circadian clock model. In highly robust models, while the parameter vectors are greatly varied, the critical reactions with a high sensitivity are uniquely determined. Interestingly, not only the per-tim loop but also the dclk-cyc loop strongly affect the period of PER, although the dclk-cyc loop hardly changes its amplitude and it is not potentially influential. In conclusion, MAR is a powerful method to explore wide parameter space without human-biases and to link a robust property to network architectures without knowing the exact parameter values. MAR identifies the reactions critically responsible for determining the period and amplitude in the interlocked feedback model and suggests that the circadian clock intensively evolves or designs the kinetic parameters so that it creates a highly robust cycle
    corecore