9 research outputs found

    Accurate Telescope Mount Positioning with MEMS Accelerometers

    Get PDF
    This paper describes the advantages and challenges of applying microelectromechanical accelerometer systems (MEMS accelerometers) in order to attain precise, accurate and stateless positioning of telescope mounts. This provides a completely independent method from other forms of electronic, optical, mechanical or magnetic feedback or real-time astrometry. Our goal is to reach the sub-arcminute range which is well smaller than the field-of-view of conventional imaging telescope systems. Here we present how this sub-arcminute accuracy can be achieved with very cheap MEMS sensors and we also detail how our procedures can be extended in order to attain even finer measurements. In addition, our paper discusses how can a complete system design be implemented in order to be a part of a telescope control system.Comment: Accepted for publication in PASP, 12 page

    Examining the T Tauri system with SPHERE

    Get PDF
    Context. The prototypical low-mass young stellar object, T Tauri, is a well-studied multiple system with at least three components. Aims. We aim to explore the T Tau system with the highest spatial resolution, study the time evolution of the known components, and re-determine the orbital parameters of the stars. Methods. Near-infrared classical imaging and integral field spectrograph observations were obtained during the Science Verification of SPHERE, the new high-contrast imaging facility at the VLT. The obtained FWHM of the primary star varies between 0.050" and 0.059", making these the highest spatial resolution near-infrared images of the T Tauri system obtained to date. Results. Our near-infrared images confirm the presence of extended emission south of T Tau Sa, reported in the literature. New narrow-band images show, for the first time, that this feature shows strong emission in both the Br-{\gamma} and H2 1-0 S(1) lines. Broadband imaging at 2.27 {\mu}m shows that T Tau Sa is 0.92 mag brighter than T Tau Sb, which is in contrast to observations from Jan. 2014 (when T Tau Sa was fainter than Sb), and demonstrates that T Tau Sa has entered a new period of high variability. The newly obtained astrometric positions of T Tau Sa and Sb agree with orbital fits from previous works. The orbit of T Tau S (the center of gravity of Sa and Sb) around T Tau N is poorly constrained by the available observations and can be fit with a range of orbits ranging from a nearly circular orbit with a period of 475 years to highly eccentric orbits with periods up to 2.7*10^4 years. We also detected a feature south of T Tau N, at a distance of 144±3144 \pm 3 mas, which shows the properties of a new companion.Comment: Accepted by A&A Letter

    Hexapod Design For All-Sky Sidereal Tracking

    Get PDF
    In this paper we describe a hexapod-based telescope mount system intended to provide sidereal tracking for the Fly's Eye Camera project -- an upcoming moderate, 21"/pixel resolution all-sky survey. By exploiting such a kind of meter-sized telescope mount, we get a device which is both capable of compensating for the apparent rotation of the celestial sphere and the same design can be used independently from the actual geographical location. Our construction is the sole currently operating hexapod telescope mount performing dedicated optical imaging survey with a sub-arcsecond tracking precision.Comment: Accepted for publication in PASP, 10 page

    Multi-epoch, high spatial resolution observations of multiple T Tauri systems

    Full text link
    Context. In multiple pre-main-sequence systems the lifetime of circumstellar disks appears to be shorter than around single stars, and the actual dissipation process may depend on the binary parameters of the systems. Aims. We report high spatial resolution observations of multiple T Tauri systems at optical and infrared wavelengths. We determine if the components are gravitationally bound and orbital motion is visible, derive orbital parameters and investigate possible correlations between the binary parameters and disk states. Methods. We selected 18 T Tau multiple systems (16 binary and two triple systems, yielding 16+2×2=2016 + 2\times2=20 binary pairs) in the Taurus-Auriga star forming region from the survey by Leinert et al. (1993), with spectral types from K1 to M5 and separations from 0.22" (31 AU) to 5.8" (814 AU). We analysed data acquired in 2006-07 at Calar Alto using the AstraLux lucky imaging system, along with data from SPHERE and NACO at the VLT, and from the literature. Results. We found ten pairs to orbit each other, five pairs that may show orbital motion and five likely common proper motion pairs. We found no obvious correlation between the stellar parameters and binary configuration. The 10 μ\mum infra-red excess varies between 0.1 and 7.2 magnitudes (similar to the distribution in single stars, where it is between 1.7 and 9.1), implying that the presence of the binary star does not greatly influence the emission from the inner disk. Conclusions. We have detected orbital motion in young T Tauri systems over a timescale of 20\approx20 years. Further observations with even longer temporal baseline will provide crucial information on the dynamics of these young stellar systems.Comment: Accepted by A&

    The Fly's Eye Camera System -- an instrument design for large \'etendue time-domain survey

    Get PDF
    In this paper we briefly summarize the design concepts of the Fly's Eye Camera System, a proposed high resolution all-sky monitoring device which intends to perform high cadence time domain astronomy in multiple optical passbands while still accomplish a high \'etendue. Fundings have already been accepted by the Hungarian Academy of Sciences in order to design and build a Fly's Eye device unit. Beyond the technical details and the actual scientific goals, this paper also discusses the possibilities and yields of a network operation involving ~10 sites distributed geographically in a nearly homogeneous manner. Currently, we expect to finalize the mount assembly -- that performs the sidereal tracking during the exposures -- until the end of 2012 and to have a working prototype with a reduced number of individual cameras sometimes in the spring or summer of 2013.Comment: Accepted for publication in AN, 4.05 pages. Website of the project: http://flyseye.net
    corecore