9 research outputs found

    TeV blazar variability: the firehose instability?

    Full text link
    Recently observed minute timescale variability of blazar emission at TeV energies has imposed severe constraints on jet models and TeV emission mechanisms. We focus on a robust jet instability to explain this variability. As a consequence of the bulk outflow of the jet plasma, the pressure is likely to be anisotropic, with the parallel pressure PP_{||} in the forward jet direction exceeding the perpendicular pressure PP_{\perp}. Under these circumstances, the jet is susceptible to the firehose instability, which can cause disruptions in the large scale jet structure and result in variability of the observed radiation. For a realistic range of parameters, we find that the growth timescale of the firehose instability is \approx a few minutes, in good agreement with the observed TeV variability timescales for Mrk 501 (Albert et al. 2007) and PKS 2155-304 (Aharonian et al. 2007).Comment: Accepted for publication, MNRA

    Subaru optical observations of the old pulsar PSR B0950+08

    Full text link
    We report the B band optical observations of an old (17.5 Myr) radiopulsar PSR B0950+08 obtained with the Suprime-Cam at the Subaru telescope. We detected a faint object, B=27.07(16). Within our astrometrical accuracy it coincides with the radio position of the pulsar and with the object detected earlier by Pavlov et al. (1996) in UV with the HST/FOC/F130LP. The positional coincidence and spectral properties of the object suggest that it is the optical counterpart of PSR B0950+08. Its flux in the B band is two times higher than one would expect from the suggested earlier Rayleigh-Jeans interpretation of the only available HST observations in the adjacent F130LP band. Based on the B and F130LP photometry of the suggested counterpart and on the available X-ray data we argue in favour of nonthermal origin of the broad-band optical spectrum of PSR B0950+08, as it is observed for the optical emission of the younger, middle-aged pulsars PSR B0656+14 and Geminga. At the same time, the optical efficiency of PSR B0950+08, estimated from its spin-down power and the detected optical flux, is by several orders of magnitude higher than for these pulsars, and comparable with that for the much younger and more energetic Crab pulsar. We cannot exclude the presence of a compact, about 1'', faint pulsar nebula around PSR B0950+08, elongated perpendicular to the vector of its proper motion, unless it is not a projection of a faint extended object on the pulsar position.Comment: 8 pages, LaTeX, aa.cls style, 5 PS figures, submitted to A&A. Image is available in FITS format at http://www.ioffe.rssi.ru/astro/NSG/obs/0950-subar

    Pulsed radiation from neutron star winds

    Full text link
    The radiation of a pulsar wind is computed assuming that at roughly 10 to 100 light cylinder radii from the star, magnetic energy is dissipated into particle energy. The synchrotron emission of heated particles appears periodic, with, in general, both a pulse and an interpulse. The predicted spacing agrees well with the Crab and Vela pulse profiles.Using parameters appropriate for the Crab pulsar (magnetisation parameter at the light cylinder σ=6×104\sigma=6\times10^4, Lorentz factor Γ=250\Gamma=250) agreement is found with the observed total pulsed luminosity. This suggests that the high-energy pulses from young pulsars originate not in the corotating magnetosphere within the light cylinder (as in all other models) but from the radially directed wind well outside it.Comment: 4 pages, 2 figures, accepted for publication in A&A Letter

    Particle acceleration in three-dimensional tearing configurations

    Get PDF
    In three-dimensional electromagnetic configurations that result from unstable resistive tearing modes particles can efficiently be accelerated to relativistic energies. To prove this resistive magnetohydrodynamic simulations are used as input configurations for successive test particle simulations. The simulations show the capability of three-dimensional non-linearly evolved tearing modes to accelerate particles perpendicular to the plane of the reconnecting magnetic field components. The simulations differ considerably from analytical approaches by involving a realistic three-dimensional electric field with a non-homogenous component parallel to the current direction. The resulting particle spectra exhibit strong pitch-angle anisotropies. Typically, about 5-8 % of an initially Maxwellian distribution is accelerated to the maximum energy levels given by the macroscopic generalized electric potential structure. Results are shown for both, non-relativistic particle acceleration that is of interest, e.g., in the context of auroral arcs and solar flares, and relativistic particle energization that is relevant, e.g., in the context of active galactic nuclei.Comment: Physics of Plasmas, in prin
    corecore