183 research outputs found

    Rapid and High-Throughput Detection of Highly Pathogenic Bacteria by Ibis PLEX-ID Technology

    Get PDF
    In this manuscript, we describe the identification of highly pathogenic bacteria using an assay coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS) run on an Ibis PLEX-ID high-throughput platform. The biothreat cluster assay identifies most of the potential bioterrorism-relevant microorganisms including Bacillus anthracis, Francisella tularensis, Yersinia pestis, Burkholderia mallei and pseudomallei, Brucella species, and Coxiella burnetii. DNA from 45 different reference materials with different formulations and different concentrations were chosen and sent to a service screening laboratory that uses the PCR/ESI-MS platform to provide a microbial identification service. The standard reference materials were produced out of a repository built up in the framework of the EU funded project “Establishment of Quality Assurances for Detection of Highly Pathogenic Bacteria of Potential Bioterrorism Risk” (EQADeBa). All samples were correctly identified at least to the genus level

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Genetic Networking of the Bemisia tabaci Cryptic Species Complex Reveals Pattern of Biological Invasions

    Get PDF
    BACKGROUND: A challenge within the context of cryptic species is the delimitation of individual species within the complex. Statistical parsimony network analytics offers the opportunity to explore limits in situations where there are insufficient species-specific morphological characters to separate taxa. The results also enable us to explore the spread in taxa that have invaded globally. METHODOLOGY/PRINCIPAL FINDINGS: Using a 657 bp portion of mitochondrial cytochrome oxidase 1 from 352 unique haplotypes belonging to the Bemisia tabaci cryptic species complex, the analysis revealed 28 networks plus 7 unconnected individual haplotypes. Of the networks, 24 corresponded to the putative species identified using the rule set devised by Dinsdale et al. (2010). Only two species proposed in Dinsdale et al. (2010) departed substantially from the structure suggested by the analysis. The analysis of the two invasive members of the complex, Mediterranean (MED) and Middle East - Asia Minor 1 (MEAM1), showed that in both cases only a small number of haplotypes represent the majority that have spread beyond the home range; one MEAM1 and three MED haplotypes account for >80% of the GenBank records. Israel is a possible source of the globally invasive MEAM1 whereas MED has two possible sources. The first is the eastern Mediterranean which has invaded only the USA, primarily Florida and to a lesser extent California. The second are western Mediterranean haplotypes that have spread to the USA, Asia and South America. The structure for MED supports two home range distributions, a Sub-Saharan range and a Mediterranean range. The MEAM1 network supports the Middle East - Asia Minor region. CONCLUSION/SIGNIFICANCE: The network analyses show a high level of congruence with the species identified in a previous phylogenetic analysis. The analysis of the two globally invasive members of the complex support the view that global invasion often involve very small portions of the available genetic diversity

    Extinction Debt in Source-Sink Metacommunities

    Get PDF
    In an increasingly modified world, understanding and predicting the consequences of landscape alteration on biodiversity is a challenge for ecologists. To this end, metacommunity theory has developed to better understand the complexity of local and regional interactions that occur across larger landscapes. While metacommunity ecology has now provided several alternative models of species coexistence at different spatial scales, predictions regarding the consequences of landscape alteration have been done exclusively for the competition-colonization trade off model (CC). In this paper we investigate the effects of landscape perturbation on source-sink metacommunities. We show that habitat destruction perturbs the equilibria among species competitive effects within the metacommunity, driving both direct extinctions and an indirect extinction debt. As in CC models, we found a time lag for extinction following habitat destruction that varied in length depending upon the relative importance of direct and indirect effects. However, in contrast to CC models, we found that the less competitive species are more affected by habitat destruction. The best competitors can sometimes even be positively affected by habitat destruction, which corresponds well with the results of field studies. Our results are complementary to those results found in CC models of metacommunity dynamics. From a conservation perspective, our results illustrate that landscape alteration jeopardizes species coexistence in patchy landscapes through complex indirect effects and delayed extinctions patterns

    Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase

    Get PDF
    Carbapenems, 'last-resort' β-lactam antibiotics, are inactivated by zinc-dependent metallo-β-lactamases (MBLs). The host innate immune response withholds nutrient metal ions from microbial pathogens by releasing metal-chelating proteins such as calprotectin. We show that metal sequestration is detrimental for the accumulation of MBLs in the bacterial periplasm, because those enzymes are readily degraded in their nonmetallated form. However, the New Delhi metallo-β-lactamase (NDM-1) can persist under conditions of metal depletion. NDM-1 is a lipidated protein that anchors to the outer membrane of Gram-negative bacteria. Membrane anchoring contributes to the unusual stability of NDM-1 and favors secretion of this enzyme in outer-membrane vesicles (OMVs). OMVs containing NDM-1 can protect nearby populations of bacteria from otherwise lethal antibiotic levels, and OMVs from clinical pathogens expressing NDM-1 can carry this MBL and the bla[subscript NDM] gene. We show that protein export into OMVs can be targeted, providing possibilities of new antibacterial therapeutic strategies.Kinship Foundation. Searle Scholars ProgramMassachusetts Institute of Technology. Department of Chemistr

    Fishery-Independent Data Reveal Negative Effect of Human Population Density on Caribbean Predatory Fish Communities

    Get PDF
    BACKGROUND: Understanding the current status of predatory fish communities, and the effects fishing has on them, is vitally important information for management. However, data are often insufficient at region-wide scales to assess the effects of extraction in coral reef ecosystems of developing nations. METHODOLOGY/PRINCIPAL FINDINGS: Here, I overcome this difficulty by using a publicly accessible, fisheries-independent database to provide a broad scale, comprehensive analysis of human impacts on predatory reef fish communities across the greater Caribbean region. Specifically, this study analyzed presence and diversity of predatory reef fishes over a gradient of human population density. Across the region, as human population density increases, presence of large-bodied fishes declines, and fish communities become dominated by a few smaller-bodied species. CONCLUSIONS/SIGNIFICANCE: Complete disappearance of several large-bodied fishes indicates ecological and local extinctions have occurred in some densely populated areas. These findings fill a fundamentally important gap in our knowledge of the ecosystem effects of artisanal fisheries in developing nations, and provide support for multiple approaches to data collection where they are commonly unavailable

    Comparison of Marine Spatial Planning Methods in Madagascar Demonstrates Value of Alternative Approaches

    Get PDF
    The Government of Madagascar plans to increase marine protected area coverage by over one million hectares. To assist this process, we compare four methods for marine spatial planning of Madagascar's west coast. Input data for each method was drawn from the same variables: fishing pressure, exposure to climate change, and biodiversity (habitats, species distributions, biological richness, and biodiversity value). The first method compares visual color classifications of primary variables, the second uses binary combinations of these variables to produce a categorical classification of management actions, the third is a target-based optimization using Marxan, and the fourth is conservation ranking with Zonation. We present results from each method, and compare the latter three approaches for spatial coverage, biodiversity representation, fishing cost and persistence probability. All results included large areas in the north, central, and southern parts of western Madagascar. Achieving 30% representation targets with Marxan required twice the fish catch loss than the categorical method. The categorical classification and Zonation do not consider targets for conservation features. However, when we reduced Marxan targets to 16.3%, matching the representation level of the “strict protection” class of the categorical result, the methods show similar catch losses. The management category portfolio has complete coverage, and presents several management recommendations including strict protection. Zonation produces rapid conservation rankings across large, diverse datasets. Marxan is useful for identifying strict protected areas that meet representation targets, and minimize exposure probabilities for conservation features at low economic cost. We show that methods based on Zonation and a simple combination of variables can produce results comparable to Marxan for species representation and catch losses, demonstrating the value of comparing alternative approaches during initial stages of the planning process. Choosing an appropriate approach ultimately depends on scientific and political factors including representation targets, likelihood of adoption, and persistence goals

    RECAPP-XPR: A smartphone application for presenting and recalling experimentally controlled stimuli over longer timescales

    Get PDF
    We report two experiments that used smartphone applications for presenting and recalling verbal stimuli over extended timescales. In Experiment 1, we used an iPhone application that we had developed, called RECAPP-XPR, to present 76 participants with a single list of eight words presented at a rate of one word every hour, followed by a test of free recall an hour later. The experiment was exceptionally easy to schedule, taking only between 5 and 10 min to set up using a web-based interface. RECAPP-XPR randomly samples the stimuli, presents the stimuli, and collects the free recall data. The stimuli disappear shortly after they have been presented, and RECAPP-XPR collects data on when each stimulus was viewed. In Experiment 2, the study was replicated using the widely used image-sharing application Snapchat. A total of 197 participants were tested by 38 student experimenters, who manually presented the stimuli as “snaps” of experimentally controlled stimuli using the same experimental rates that had been used in Experiment 1. Like all snaps, these stimuli disappeared from view after a very short interval. In both experiments, we observed significant recall advantages for the first and last list items (primacy and recency effects, respectively), and there were clear tendencies to make more transitions at output between near-neighboring items, with a forward-ordered bias, consistent with temporal contiguity effects. The respective advantages and disadvantages of RECAPP-XPR and Snapchat as experimental software packages are discussed, as is the relationship between single-study-list smartphone experiments and long-term recency studies of real-world events
    corecore