6 research outputs found

    Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report

    Get PDF
    Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which to date, is the only modifiable risk factor associated with the development of glaucoma. Lowering intraocular pressure reduces glaucoma progression and current surgical approaches for glaucoma attempt to reduce outflow resistance through the trabecular meshwork. Many surgical approaches use minimally invasive glaucoma surgeries (MIGS) to control glaucoma. In this progress report, biomaterials currently employed to treat glaucoma, such as MIGS, and the issues associated with them are described. The report also discusses innovative biofabrication approaches that aim to revolutionise glaucoma treatment through tissue engineering and regenerative medicine (TERM). At present, there are very few applications targeted towards TM engineering in vivo, with a great proportion of these biomaterial structures being developed for in vitro model use. This is a consequence of the many anatomical and physiological attributes that must be considered when designing a TERM device for microscopic tissues, such as the trabecular meshwork. Ongoing advancements in TERM research from multi-disciplinary teams should lead to the development of a state-of-the-art device to restore trabecular meshwork function and provide a bio-engineering solution to improve patient outcomes

    An Optimized Method to Decellularize Human Trabecular Meshwork

    No full text
    Glaucoma is linked to raised intraocular pressure (IOP). The trabecular meshwork (TM) plays a major role in regulating IOP by enabling outflow of aqueous humor from the eye through its complex 3D structure. A lack of therapies targeting the dysfunctional TM highlights the need to develop biomimetic scaffolds that provide 3D in vitro models for glaucoma research or as implantable devices to regenerate TM tissue. To artificially mimic the TM’s structure, we assessed methods for its decellularization and outline an optimized protocol for cell removal and structural retention. Using bovine TM, we trialed 2 lysing agents—Trypsin (0.05% v/v) and Ammonium Hydroxide (NH4OH; 2% v/v). Twenty-four hours in Trypsin caused significant structural changes. Shorter exposure (2 h) reduced this disruption whilst decellularizing the tissue (dsDNA 26 ± 14 ng/mL (control 1970 ± 146 ng/mL)). In contrast, NH4OH lysed all cells (dsDNA 25 ± 21 ng/mL), and the TM structure remained intact. For human TM, 2% v/v NH4OH similarly removed cells (dsDNA 52 ± 4 ng/mL (control 1965 ± 233 ng/mL)), and light microscopy and SEM presented no structural damage. X-ray computed tomography enabled a novel 3D reconstruction of decellularized human TM and observation of the tissue’s intricate architecture. This study provides a new, validated method using NH4OH to decellularize delicate human TM without compromising tissue structure

    An Optimized Method to Decellularize Human Trabecular Meshwork

    No full text
    Glaucoma is linked to raised intraocular pressure (IOP). The trabecular meshwork (TM) plays a major role in regulating IOP by enabling outflow of aqueous humor from the eye through its complex 3D structure. A lack of therapies targeting the dysfunctional TM highlights the need to develop biomimetic scaffolds that provide 3D in vitro models for glaucoma research or as implantable devices to regenerate TM tissue. To artificially mimic the TM’s structure, we assessed methods for its decellularization and outline an optimized protocol for cell removal and structural retention. Using bovine TM, we trialed 2 lysing agents—Trypsin (0.05% v/v) and Ammonium Hydroxide (NH(4)OH; 2% v/v). Twenty-four hours in Trypsin caused significant structural changes. Shorter exposure (2 h) reduced this disruption whilst decellularizing the tissue (dsDNA 26 ± 14 ng/mL (control 1970 ± 146 ng/mL)). In contrast, NH(4)OH lysed all cells (dsDNA 25 ± 21 ng/mL), and the TM structure remained intact. For human TM, 2% v/v NH(4)OH similarly removed cells (dsDNA 52 ± 4 ng/mL (control 1965 ± 233 ng/mL)), and light microscopy and SEM presented no structural damage. X-ray computed tomography enabled a novel 3D reconstruction of decellularized human TM and observation of the tissue’s intricate architecture. This study provides a new, validated method using NH(4)OH to decellularize delicate human TM without compromising tissue structure

    Cryo-Electrospinning Generates Highly Porous Fiber Scaffolds Which Improves Trabecular Meshwork Cell Infiltration

    No full text
    Human trabecular meshwork is a sieve-like tissue with large pores, which plays a vital role in aqueous humor outflow. Dysfunction of this tissue can occur, which leads to glaucoma and permanent vision loss. Replacement of trabecular meshwork with a tissue-engineered device is the ultimate objective. This study aimed to create a biomimetic structure of trabecular meshwork using electrospinning. Conventional electrospinning was compared to cryogenic electrospinning, the latter being an adaptation of conventional electrospinning whereby dry ice is incorporated in the fiber collector system. The dry ice causes ice crystals to form in-between the fibers, increasing the inter-fiber spacing, which is retained following sublimation. Structural characterization demonstrated cryo-scaffolds to have closer recapitulation of the trabecular meshwork, in terms of pore size, porosity, and thickness. The attachment of a healthy, human trabecular meshwork cell line (NTM5) to the scaffold was not influenced by the fabrication method. The main objective was to assess cell infiltration. Cryo-scaffolds supported cell penetration deep within their structure after seven days, whereas cells remained on the outer surface for conventional scaffolds. This study demonstrates the suitability of cryogenic electrospinning for the close recapitulation of trabecular meshwork and its potential as a 3D in vitro model and, in time, a tissue-engineered device.</jats:p

    Morphological and biomechanical analyses of the human healthy and glaucomatous aqueous outflow pathway: Imaging-to-modeling.

    No full text
    Background and objectiveIntraocular pressure (IOP) is maintained via a dynamic balance between the production of aqueous humor and its drainage through the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway. Primary open angle glaucoma (POAG) is often associated with IOP elevation that occurs due to an abnormally high outflow resistance across the outflow pathway. Outflow tissues are viscoelastic and actively interact with aqueous humor dynamics through a two-way fluid-structure interaction coupling. While glaucoma affects the morphology and stiffness of the outflow tissues, their biomechanics and hydrodynamics in glaucoma eyes remain largely unknown. This research aims to develop an image-to-model method allowing the biomechanics and hydrodynamics of the conventional aqueous outflow pathway to be studied.MethodsWe used a combination of X-ray computed tomography and scanning electron microscopy to reconstruct high-fidelity, eye-specific, 3D microstructural finite element models of the healthy and glaucoma outflow tissues in cellularized and decellularized conditions. The viscoelastic TM/JCT/SC complex finite element models with embedded viscoelastic beam elements were subjected to a physiological IOP load boundary; the stresses/strains and the flow state were calculated using fluid-structure interaction and computational fluid dynamics.ResultsBased on the resultant hydrodynamics parameters across the outflow pathway, the primary site of outflow resistance in healthy eyes was in the JCT and immediate vicinity of the SC inner wall, while the majority of the outflow resistance in the glaucoma eyes occurred in the TM. The TM and JCT in the glaucoma eyes showed 1.32-fold and 1.13-fold larger beam thickness and smaller trabecular space size (2.24-fold and 1.50-fold) compared to the healthy eyes.ConclusionsCharacterizing the accurate morphology of the outflow tissues may significantly contribute to constructing more accurate, robust, and reliable models, that can eventually help to better understand the dynamic IOP regulation, hydrodynamics of the aqueous humor, and outflow resistance dynamic in the human eyes. This model demonstrates proof of concept for determining changes to outflow resistance in healthy and glaucomatous tissues and thus may be utilized in larger cohorts of donor tissues where disease specificity, race, age, and gender of the eye donors may be accounted for
    corecore