1,427 research outputs found

    The correlation of various techniques of near phoria measurement

    Get PDF
    The correlation of various techniques of near phoria measuremen

    A survey of attitudes toward visual training in the Northwest

    Get PDF
    A questionnaire was sent to one third of the ophthalmologists and optometrists in Oregon and Washington . It contained questions pertaining to practitioner attitudes toward their educational backgrounds in visual training. Questions dealing with some of the controversial issues in visual training\u27s role in strabismus and amblyopia therapy were also included. Lastly, profile information and data concerning the practice in general was gathered from each survey recipient. The respondent population was divided into groups by profession and extent of VT offered. The different groups responses were then tabulated and statistically compared within and between professions

    Optimization of the leak conductance in the squid giant axon

    Full text link
    We report on a theoretical study showing that the leak conductance density, \GL, in the squid giant axon appears to be optimal for the action potential firing frequency. More precisely, the standard assumption that the leak current is composed of chloride ions leads to the result that the experimental value for \GL is very close to the optimal value in the Hodgkin-Huxley model which minimizes the absolute refractory period of the action potential, thereby maximizing the maximum firing frequency under stimulation by sharp, brief input current spikes to one end of the axon. The measured value of \GL also appears to be close to optimal for the frequency of repetitive firing caused by a constant current input to one end of the axon, especially when temperature variations are taken into account. If, by contrast, the leak current is assumed to be composed of separate voltage-independent sodium and potassium currents, then these optimizations are not observed.Comment: 9 pages; 9 figures; accepted for publication in Physical Review

    CT Automated Exposure Control Using A Generalized Detectability Index

    Get PDF
    Purpose Identifying an appropriate tube current setting can be challenging when using iterative reconstruction due to the varying relationship between spatial resolution, contrast, noise, and dose across different algorithms. This study developed and investigated the application of a generalized detectability index (d\u27gen) to determine the noise parameter to input to existing automated exposure control (AEC) systems to provide consistent image quality (IQ) across different reconstruction approaches. Methods This study proposes a task‐based automated exposure control (AEC) method using a generalized detectability index (d\u27gen). The proposed method leverages existing AEC methods that are based on a prescribed noise level. The generalized d\u27gen metric is calculated using lookup tables of task‐based modulation transfer function (MTF) and noise power spectrum (NPS). To generate the lookup tables, the American College of Radiology CT accreditation phantom was scanned on a multidetector CT scanner (Revolution CT, GE Healthcare) at 120 kV and tube current varied manually from 20 to 240 mAs. Images were reconstructed using a reference reconstruction algorithm and four levels of an in‐house iterative reconstruction algorithm with different regularization strengths (IR1–IR4). The task‐based MTF and NPS were estimated from the measured images to create lookup tables of scaling factors that convert between d\u27gen and noise standard deviation. The performance of the proposed d\u27gen‐AEC method in providing a desired IQ level over a range of iterative reconstruction algorithms was evaluated using the American College of Radiology (ACR) phantom with elliptical shell and using a human reader evaluation on anthropomorphic phantom images. Results The study of the ACR phantom with elliptical shell demonstrated reasonable agreement between the d\u27gen predicted by the lookup table and d\u27 measured in the images, with a mean absolute error of 15% across all dose levels and maximum error of 45% at the lowest dose level with the elliptical shell. For the anthropomorphic phantom study, the mean reader scores for images resulting from the d\u27gen‐AEC method were 3.3 (reference image), 3.5 (IR1), 3.6 (IR2), 3.5 (IR3), and 2.2 (IR4). When using the d\u27gen‐AEC method, the observers’ IQ scores for the reference reconstruction were statistical equivalent to the scores for IR1, IR2, and IR3 iterative reconstructions (P \u3e 0.35). The d\u27gen‐AEC method achieved this equivalent IQ at lower dose for the IR scans compared to the reference scans. Conclusions A novel AEC method, based on a generalized detectability index, was investigated. The proposed method can be used with some existing AEC systems to derive the tube current profile for iterative reconstruction algorithms. The results provide preliminary evidence that the proposed d\u27gen‐AEC can produce similar IQ across different iterative reconstruction approaches at different dose levels

    Enhanced signal of astrophysical tau neutrinos propagating through Earth

    Get PDF
    Earth absorbs \nue and \numu of energies above about 100 TeV. As is well-known, although \nutau will also disappear through charged-current interactions, the \nutau flux will be regenerated by prompt tau decays. We show that this process also produces relatively large fluxes of secondary \nube and \nubmu, greatly enhancing the detectability of the initial \nutau. This is particularly important because at these energies \nutau is a significant fraction of the expected astrophysical neutrino flux, and only a tiny portion of the atmospheric neutrino flux.Comment: Four pages, two inline figure

    Probing neutrino masses with future galaxy redshift surveys

    Get PDF
    We perform a new study of future sensitivities of galaxy redshift surveys to the free-streaming effect caused by neutrino masses, adding the information on cosmological parameters from measurements of primary anisotropies of the cosmic microwave background (CMB). Our reference cosmological scenario has nine parameters and three different neutrino masses, with a hierarchy imposed by oscillation experiments. Within the present decade, the combination of the Sloan Digital Sky Survey (SDSS) and CMB data from the PLANCK experiment will have a 2-sigma detection threshold on the total neutrino mass close to 0.2 eV. This estimate is robust against the inclusion of extra free parameters in the reference cosmological model. On a longer term, the next generation of experiments may reach values of order sum m_nu = 0.1 eV at 2-sigma, or better if a galaxy redshift survey significantly larger than SDSS is completed. We also discuss how the small changes on the free-streaming scales in the normal and inverted hierarchy schemes are translated into the expected errors from future cosmological data.Comment: 14 pages, 7 figures. Added results with the KAOS proposal and 1 referenc

    On the gravitational production of superheavy dark matter

    Get PDF
    The dark matter in the universe can be in the form of a superheavy matter species (WIMPZILLA). Several mechanisms have been proposed for the production of WIMPZILLA particles during or immediately following the inflationary epoch. Perhaps the most attractive mechanism is through gravitational particle production, where particles are produced simply as a result of the expansion of the universe. In this paper we present a detailed numerical calculation of WIMPZILLA gravitational production in hybrid-inflation models and natural-inflation models. Generalizing these findings, we also explore the dependence of the gravitational production mechanism on various models of inflation. We show that superheavy dark matter production seems to be robust, with Omega_X h^2 ~ (M_X / (10^11 GeV))^2 (T_RH / (10^9 GeV)), so long as M_X < H_I, where M_X is the WIMPZILLA mass, T_RH is the reheat temperature, and H_I is the expansion rate of the universe during inflation.Comment: 26 pages, 7 figures; LaTeX; submitted to Physical Review D; minor typographical error correcte

    Current cosmological bounds on neutrino masses and relativistic relics

    Get PDF
    We combine the most recent observations of large-scale structure (2dF and SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put constraints on flat cosmological models where the number of massive neutrinos and of massless relativistic relics are both left arbitrary. We discuss the impact of each dataset and of various priors on our bounds. For the standard case of three thermalized neutrinos, we find an upper bound on the total neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is quite insensitive to the splitting of the total mass between the three species. When the total number of neutrinos or relativistic relics N_eff is left free, the upper bound on sum m_nu (at 2sigma, including all priors) ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an explanation of the parameter degeneracy that allows larger values of the masses when N_eff increases. Finally, we show that the limit on the total neutrino mass is not significantly modified in the presence of primordial gravitational waves, because current data provide a clear distinction between the corresponding effects.Comment: 13 pages, 6 figure

    Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites

    Get PDF
    Autoantibodies to insulin are a harbinger of autoimmunity in type 1 diabetes in humans and in non-obese diabetic mice. To understand the genesis of these autoantibodies, we investigated the interactions of insulin-specific T and B lymphocytes using T cell and B cell receptor transgenic mice. We found spontaneous anti-insulin germinal center (GC) formation throughout lymphoid tissues with GC B cells binding insulin. Moreover, because of the nature of the insulin epitope recognized by the T cells, it was evident that GC B cells presented a broader repertoire of insulin epitopes. Such broader recognition was reproduced by activating naive B cells ex vivo with a combination of CD40 ligand and interleukin 4. Thus, insulin immunoreactivity extends beyond the pancreatic lymph node–islets of Langerhans axis and indicates that circulating insulin, despite its very low levels, can have an influence on diabetogenesis

    New constraint on the cosmological background of relativistic particles

    Full text link
    We have derived new bounds on the relativistic energy density in the Universe from cosmic microwave background (CMB), large scale structure (LSS), and type Ia supernova (SNI-a) observations. In terms of the effective number of neutrino species a bound of N_\nu = 4.2^{+1.2}_{-1.7} is derived at 95% confidence. This bound is significantly stronger than previous determinations, mainly due to inclusion of new CMB and SNI-a observations. The absence of a cosmological neutrino background (N_\nu = 0) is now excluded at 5.4 \sigma. The value of N_\nu is compatible with the value derived from big bang nucleosynthesis considerations, marking one of the most remarkable successes of the standard cosmological model. In terms of the cosmological helium abundance, the CMB, LSS, and SNI-a observations predict a value of 0.240 < Y < 0.281.Comment: 10 pages, 3 figures, references adde
    • 

    corecore