8 research outputs found

    Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation

    Get PDF
    Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress

    Oxygen-regulated expression of TGF-beta 3, a growth factor involved in trophoblast differentiation

    Full text link
    The transforming growth factor-beta 3 (TGF-beta 3) is involved in oxygen-dependent differentiation processes during placental development and pregnancy disorders. However, the importance of oxygen partial pressure for the regulation of TGF-beta 3 expression is presently unclear. We and others presented preliminary evidence that the hypoxia-inducible factor-1 (HIF-1) confers TGF-beta 3 transcription but it was unknown whether this occurred directly or indirectly. To analyze how HIF-1 regulates TGF-beta 3 gene transcription, we cloned and sequenced the mouse TGF-beta 3 promoter region. Multiple putative HIF-1 binding sites (HBSs) were identified, many of which co-localized with two G+C rich CpG islands 5' to the TGF-beta 3 transcription start site. A 6.8 kb fragment of the TGF-beta 3 promoter induced reporter gene expression under hypoxic conditions or when treated with an iron chelator known to stabilize and activate the HIF-1 alpha subunit. Deletion of a 2.4 kb fragment upstream of the distal CpG island abolished inducibility of reporter gene expression. Two HBSs (HBS1 and HBS6) that bound the HIF-1 protein could be identified within this 2.4 kb fragment. These results suggest that TGF-beta 3 gene expression is directly regulated by HIF-1
    corecore