128 research outputs found

    Wnt16 Elicits a Protective Effect Against Fractures and Supports Bone Repair in Zebrafish

    Get PDF
    Bone homeostasis is a dynamic, multicellular process which is required throughout life to maintain bone integrity, prevent fracture and respond to skeletal damage. WNT16 has been linked to bone fragility and osteoporosis in human genome wide association studies, as well as the functional haematopoiesis of leukocytes in vivo. However, the mechanisms by which WNT16 promotes bone health and repair are not fully understood. We used CRISPR-Cas9 to generate mutant zebrafish lacking Wnt16 (wnt16-/-) to study its effect on bone dynamically. wnt16 mutants displayed variable tissue mineral density and were susceptible to spontaneous fractures and the accumulation of bone calluses at an early age. Fractures were induced in the lepidotrichia of the caudal fins of wnt16-/- and wild type (WT) zebrafish; this model was used to probe the mechanisms by which Wnt16 regulates skeletal and immune cell-dynamics in vivo. In WT fins, wnt16 expression increased significantly during the early stages for bone repair. Mineralization of bone during fracture repair was significantly delayed in wnt16 mutants compared to WT zebrafish. Surprisingly, we found no evidence that the recruitment of innate immune cells to fractures or soft callus formation was altered in wnt16 mutants. However, osteoblast recruitment was significantly delayed in wnt16 mutants post-fracture, coinciding with precocious activation of the canonical Wnt signalling pathway. In situ hybridization suggests that canonical Wnt-responsive cells within fractures are osteoblast progenitors, and that osteoblast differentiation during bone repair is coordinated by the dynamic expression of runx2a and wnt16. This study highlights zebrafish as an emerging model for functionally validating osteoporosis-associated genes and investigating fracture repair dynamically in vivo. Using this model, we demonstrate that Wnt16 protects against fracture and supports bone repair, likely by modulating canonical Wnt activity, via runx2a, to facilitate osteoblast differentiation and bone matrix deposition

    Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    Get PDF
    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis

    Mild folate deficiency induces genetic and epigenetic instability and phenotype changes in prostate cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Folate (vitamin B9) is essential for cellular proliferation as it is involved in the biosynthesis of deoxythymidine monophosphate (dTMP) and s-adenosylmethionine (AdoMet). The link between folate depletion and the genesis and progression of cancers of epithelial origin is of high clinical relevance, but still unclear. We recently demonstrated that sensitivity to low folate availability is affected by the rate of polyamine biosynthesis, which is prominent in prostate cells. We, therefore, hypothesized that prostate cells might be highly susceptible to genetic, epigenetic and phenotypic changes consequent to folate restriction.</p> <p>Results</p> <p>We studied the consequences of long-term, mild folate depletion in a model comprised of three syngenic cell lines derived from the transgenic adenoma of the mouse prostate (TRAMP) model, recapitulating different stages of prostate cancer; benign, transformed and metastatic. High-performance liquid chromatography analysis demonstrated that mild folate depletion (100 nM) sufficed to induce imbalance in both the nucleotide and AdoMet pools in all prostate cell lines. Random oligonucleotide-primed synthesis (ROPS) revealed a significant increase in uracil misincorporation and DNA single strand breaks, while spectral karyotype analysis (SKY) identified five novel chromosomal rearrangements in cells grown with mild folate depletion. Using global approaches, we identified an increase in CpG island and histone methylation upon folate depletion despite unchanged levels of total 5-methylcytosine, indicating a broad effect of folate depletion on epigenetic regulation. These genomic changes coincided with phenotype changes in the prostate cells including increased anchorage-independent growth and reduced sensitivity to folate depletion.</p> <p>Conclusions</p> <p>This study demonstrates that prostate cells are highly susceptible to genetic and epigenetic changes consequent to mild folate depletion as compared to cells grown with supraphysiological amounts of folate (2 ΞΌM) routinely used in tissue culture. In addition, we elucidate for the first time the contribution of these aspects to consequent phenotype changes in epithelial cells. These results provide a strong rationale for studying the effects of folate manipulation on the prostate <it>in vivo</it>, where cells might be more sensitive to changes in folate status resulting from folate supplementation or antifolate therapeutic approaches.</p

    K.Vita: a feasibility study of a blend of medium chain triglycerides to manage drug-resistant epilepsy

    Get PDF
    This prospective open-label feasibility study aimed to evaluate acceptability, tolerability and compliance with dietary intervention with K.Vita, a medical food containing a unique ratio of decanoic acid to octanoic acid, in individuals with drug-resistant epilepsy. Adults and children aged 3-18 years with drug-resistant epilepsy took K.Vita daily whilst limiting high-refined sugar food and beverages. K.Vita was introduced incrementally with the aim of achieving ≀35% energy requirements for children or 240 ml for adults. Primary outcome measures were assessed by study completion, participant diary, acceptability questionnaire and K.Vita intake. Reduction in seizures or paroxysmal events was a secondary outcome. 23/35 (66%) children and 18/26 (69%) adults completed the study; completion rates were higher when K.Vita was introduced more gradually. Gastrointestinal disturbances were the primary reason for discontinuation, but symptoms were similar to those reported from ketogenic diets and incidence decreased over time. At least three-quarters of participants/caregivers reported favourably on sensory attributes of K.Vita, such as taste, texture and appearance, and ease of use. Adults achieved a median intake of 240 ml K.Vita, and children 120 ml (19% daily energy). Three children and one adult had ß-hydroxybutyrate >1 mmol/l. There was 50% (95% CI 39-61%) reduction in mean frequency of seizures/events. Reduction in seizures or paroxysmal events correlated significantly with blood concentrations of medium chain fatty acids (C10 and C8) but not ß-hydroxybutyrate. K.Vita was well accepted and tolerated. Side effects were mild and resolved with dietetic support. Individuals who completed the study complied with K.Vita and additional dietary modifications. Dietary intervention had a beneficial effect on frequency of seizures or paroxysmal events, despite absent or very low levels of ketosis. We suggest that K.Vita may be valuable to those with drug-resistant epilepsy, particularly those who cannot tolerate or do not have access to ketogenic diets, and may allow for more liberal dietary intake compared to ketogenic diets, with mechanisms of action perhaps unrelated to ketosis. Further studies of effectiveness of K.Vita are warranted

    Regulation of RKIP Function by Helicobacter pylori in Gastric Cancer

    Get PDF
    Helicobacter pylori (H. pylori) is a gram-negative, spiral-shaped bacterium that infects more than half of the world’s population and is a major cause of gastric adenocarcinoma. The mechanisms that link H. pylori infection to gastric carcinogenesis are not well understood. In the present study, we report that the Raf-kinase inhibitor protein (RKIP) has a role in the induction of apoptosis by H. pylori in gastric epithelial cells. Western blot and luciferase transcription reporter assays demonstrate that the pathogenicity island of H. pylori rapidly phosphorylates RKIP, which then localizes to the nucleus where it activates its own transcription and induces apoptosis. Forced overexpression of RKIP enhances apoptosis in H. pylori-infected cells, whereas RKIP RNA inhibition suppresses the induction of apoptosis by H. pylori infection. While inducing the phosphorylation of RKIP, H. pylori simultaneously targets non-phosphorylated RKIP for proteasome-mediated degradation. The increase in RKIP transcription and phosphorylation is abrogated by mutating RKIP serine 153 to valine, demonstrating that regulation of RKIP activity by H. pylori is dependent upon RKIP’s S153 residue. In addition, H. pylori infection increases the expression of Snail, a transcriptional repressor of RKIP. Our results suggest that H. pylori utilizes a tumor suppressor protein, RKIP, to promote apoptosis in gastric cancer cells

    Sex matters during adolescence: Testosterone-related cortical thickness maturation differs between boys and girls

    Get PDF
    Age-related changes in cortical thickness have been observed during adolescence, including thinning in frontal and parietal cortices, and thickening in the lateral temporal lobes. Studies have shown sex differences in hormone-related brain maturation when boys and girls are age-matched, however, because girls mature 1-2 years earlier than boys, these sex differences could be confounded by pubertal maturation. To address puberty effects directly, this study assessed sex differences in testosterone-related cortical maturation by studying 85 boys and girls in a narrow age range and matched on sexual maturity. We expected that testosterone-by-sex interactions on cortical thickness would be observed in brain regions known from the animal literature to be high in androgen receptors. We found sex differences in associations between circulating testosterone and thickness in left inferior parietal lobule, middle temporal gyrus, calcarine sulcus, and right lingual gyrus, all regions known to be high in androgen receptors. Visual areas increased with testosterone in boys, but decreased in girls. All other regions were more impacted by testosterone levels in girls than boys. The regional pattern of sex-by-testosterone interactions may have implications for understanding sex differences in behavior and adolescent-onset neuropsychiatric disorders. Β© 2012 Bramen et al

    Imaging the boundariesβ€”innovative tools for microscopy of living cells and real-time imaging

    Get PDF
    Recently, light microscopy moved back into the spotlight, which is mainly due to the development of revolutionary technologies for imaging real-time events in living cells. It is truly fascinating to see enzymes β€œat work” and optically acquired images certainly help us to understand biological processes better than any abstract measurements. This review aims to point out elegant examples of recent cell-biological imaging applications that have been developed with a chemical approach. The discussed technologies include nanoscale fluorescence microscopy, imaging of model membranes, automated high-throughput microscopy control and analysis, and fluorescent probes with a special focus on visualizing enzyme activity, free radicals, and protein–protein interaction designed for use in living cells
    • …
    corecore