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Scleraxis genes are required for normal musculoskeletal
development and for rib growth and mineralization
in zebrafish
Erika Kague,* Simon M. Hughes,† Elizabeth A. Lawrence,* Stephen Cross,* Elizabeth Martin-Silverstone,*
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*Department of Physiology, Pharmacology, and Neuroscience, Medical Sciences, University of Bristol, Bristol, United Kingdom; and †Randall
Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College
London, London, United Kingdom

ABSTRACT: Tendons are an essential part of the musculoskeletal system, connecting muscle and skeletal elements to
enable forcegeneration.The transcription factor scleraxismarksvertebrate tendons fromearly specification.Scleraxis-
null mice are viable and have a range of tendon and bone defects in the trunk and limbs but no described cranial
phenotype.We report the expressionof zebrafish scleraxis orthologs: scleraxis homolog (scx)-a and scxb in cranial and
intramuscular tendons and in other skeletal elements. Single mutants for either scxa or scxb, generated by clustered
regularly interspacedshortpalindromic repeats (CRISPR)/CRISPR-associatedprotein9 (Cas9), areviableandfertileas
adult fish. Although scxbmutants show no obvious phenotype, scxamutant embryos have defects in cranial tendon
maturationandmusclemisalignment.Mutationofbothscleraxisgenes results inmoreseveredefects in cranial tendon
differentiation, muscle and cartilage dysmorphogenesis and paralysis, and lethality by 2–5 wk, which indicates an
essential function of scleraxis for craniofacial development. At juvenile and adult stages, ribs in scxamutants fail to
mineralize and/or are small and heavily fractured. Scxa mutants also have smaller muscle volume, abnormal swim
movement, and defects in bone growth and composition. Scleraxis function is therefore essential for normal cranio-
facial formand function andvital for fish development.—Kague, E., Hughes, S.M., Lawrence, E. A., Cross, S.,Martin-
Silverstone, E.,Hammond,C. L., Hinits, Y. Scleraxis genes are required for normalmusculoskeletal development and
for rib growth and mineralization in zebrafish. FASEB J. 33, 9116–9130 (2019). www.fasebj.org
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The musculoskeletal system is formed by coordinated
differentiation and morphogenesis of skeletal muscle,
tendon, ligament, cartilage, bone, and associated joint cell

types (reviewed in refs. 1 and 2). Recent studies have
shown thatboth signalingbetweencomponent tissuesand
physical forces deriving from muscular contraction or
passive loadcan remodelvariouselementsof the systemto
fit form to function (reviewed in ref. 3). In the integrated
musculoskeletal system, resolving the primary cause of
defects requires identification of the earliest failures—in
muscle, bone, or tendon—and determination of their sec-
ondary consequences during development of the entire
system.With such detailed understanding, treatments for
genetic or environmentally induced musculoskeletal pa-
thologies may be more effective.

Tendons play an essential role in muscular control of the
body by connecting muscle and skeletal elements, allowing
force transmission. The earliest and most persistent known
marker for the tendoncell lineage is thebasichelix-loop-helix
(bHLH) transcription factor scleraxis (scx) (4–6). Scx ex-
pressionmarksasomitic compartmentcalled thesyndetome
in mammals and birds, from which the tendon precursors
are derived (7). Scx is also expressed in pharyngeal arches
and facial tendons of mouse embryos (8–10). Scx-null
mice are viable but show a dramatic defect in tendon
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differentiation, resulting in a loss of intermuscular tendons
and the tendons responsible for transmitting musculoskel-
etal force in the limbs, tail, and trunk.However, short-range
muscle-anchoring tendons, such as the ones anchoring the
intercostal muscles to the ribs, and ligaments, like the cru-
ciate ligaments of the knee, are unaffected (11). Scx is not
required for tendon cell specification, as tendon progenitors
are present in Scx2/2mutant mice, but Scx is necessary for
the condensation and differentiation of tendon cell pop-
ulations (11). Experiments in mice and chicks have shown
that Scx is required for secretion of structural extracellular
matrix (ECM) components, including col1a1, other
tendon-associated collagens, and tenomodulin (Tnmd)
(12–14), for formation of extended cytoplasmic exten-
sions that support matrix organization and in the cross-
talk between tenocytes and endotenon cells (11).

Scx is also essential for developmental events beyond
tendons themselves. Scx is required for normal develop-
ment of entheses, which serve as insertion points for ten-
dons onto bones (14–17). Most recently, scx was also
implicated in regulation of fracture callus formation dur-
ing bone healing (18). Thus, scx promotes several aspects
of musculoskeletal development in amniotes.

It has been suggested that Scx also functions in tendons
of lower vertebrates. In frogs, Scx accumulates at the end of
muscle fibers in the somites and the limbsand is involved in
inducing tendonmatrix genes tenascinC andbetaig-h3 (19,
20). In trout and zebrafish, the myosepta, sheets of con-
nective tissue that separate the somite muscle blocks, are
initially acellular but later contain cells expressing col1a1
and Scx (21, 22). Zebrafish have 2 Scx genes, scxa and scxb,
but only scxa expression has been described (23, 24).
Zebrafish scxa-positive cranial tenocytes are located be-
tween muscles and the craniofacial skeleton and coexpress
tendon markers such as tnmd, col1a2, and trsp4b (23–26).
Interestingly, cranial and fin tendon progenitors can be in-
duced in the absence of muscle or cartilage, whereas myo-
septal scxa expression requires muscle for its initiation (23),
which suggests that these tendon populations have differ-
ent origins and regulation. As in mammals, zebrafish have
neural crest–derived craniofacial tendons and ligaments (8,
23, 24, 26, 27). However, knockdown experiments in zebra-
fishwith antisensemorpholino oligonucleotides against
both scxa and scxb were reported to have no effect on
tnmd expression or create any craniofacial defects in the
embryos (23). Although expression data implicate Scx
in tendon development in various vertebrate groups,
functional data derivemostly frommice trunk and limbs.
We set out to create a zebrafish loss-of-functionmodel to
increase understanding of Scx function across vertebrates.

Herewe describe the differential expression of scxa and
scxb in embryonic, juvenile, and adult zebrafish. Zebrafish
single mutants for scxa or scxb are each viable, allowing
assessment of the adult musculoskeletal system. Muta-
tions in scxa lead to embryonic defects in cranial tendon
compositionandshapeaswell asmusclemisalignment.At
juvenile and adult stages, Scxa is essential for growth and
mineralization of the ribs and is required for normal swim
movement, muscle volume, and body composition. Lack
of Scxa in the mutants also results in ectopic growth of
bone in neural and haemal arches while also reducing jaw

bone mineral density (BMD). Lack of Scxb alone has no
obvious phenotype but exacerbates the effect of the lack of
Scxa, indicating partially redundant function. Double
mutants show severe cranial defects but no obvious defect
in somiticmyotendinous junctions (MTJs). Doublemutant
embryos have reduced muscle growth and function and
paralysis of the jaw, leading to death at early juvenile stages.

MATERIALS AND METHODS

Generation of mutant zebrafish lines
and maintenance

Clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing
(28) was used to target scxa (zv11, Chr19: 3001919-3001938,
GGGGGTGGCGGACGGCTGAT) and scxb (zv11, Chr16:
31,396,781-31,396,801, GGCTATGGTTCCTTTAAGCT) and
yielded 2 nonsense alleles for scxa (scxakg141, scxakg170) and 1 for
scxb (scxbkg107), all of which led to premature stop codons up-
stream of the bHLH domain (Supplemental Fig. S1). scxakg141

carries a 4 base pair (bp) deletion leading to a frameshift after
amino acid (aa) 64, addinga tail of 2 extra incorrect aas followed
by apremature stop. scxakg170 carry a 1-bp insertion also leading
to a frameshift after aa 64, adding a 51 wrong aa tail before a
premature stop codon in exon 1. scxbkg107 is a deletion of 12 bp
combined with a 27-bp insertion, which creates an immediate
UAG stop codon after 45 aa of the wild-type protein (Supple-
mental Fig. S1). Thenewmutant and transgenic lines,Tg(actc1b:
egfp)zf13 (29) and TgBAC(col2a1a:mCherry)hu5910 (30), were
maintained on an Alcian blue (AB) wild-type background.
Staging and husbandry were as previously described (31).

mRNA in situ hybridization
and immunohistochemistry

In situ mRNA hybridization was performed as previously de-
scribed (32) and adapted for juveniles, whichwere cut into 3 or 4
pieces, skinned, bleached, and then treated with 50 mg/ml pro-
teinase K for 15 min and refixed. Probes for scxa and scxb were
made by amplifying from zebrafish cDNA [72 hours post-
fertilization (hpf); Thermo Fisher Scientific,Waltham,MA,USA]
a 1151 and 847 bp fragment, respectively, and cloning them into
pGEM-Teasy vector (Promega, Madison, WI, USA). The fol-
lowing primers were used: 59-CAGAAAGCCGGAGGAGTG-
TG-39 and 59-TGTGTATGCGCAGAAAAAGTGAC-39 for scxa
and 59-AGCAGGACTGGTTCTTCATTCTAA 39 and 59-CAG-
TGTTGCGTTCCGTTCA-39 for scxb. For tnmd and xirp2a probes,
the followingprimers (containingT3polymerase site)wereused:
59-TCCACCCATCTCCTCTCAGA-39 and 59-GGATCCATTA-
ACCCTCACTAAAGGGAATGTGGGTAGTTGCCATGGAT-39
for tnmd and 59-CTCAGCAGAGCACGGTGGAAAAC-39 and
59-GGATCCATTAACCCTCACTAAAGGGAAGATGGGGCG-
GGTTTCAAACAT-39 for xirp2a. Published probes include Sox9a
(33) and tnnc (34). For immunohistochemistry, the following
primary antibodies were used: sarcomeric myosin heavy chain
(MyHC): A4.1025, 1:10 (35), MF20 (Developmental Studies Hy-
bridomaBank;DSHB), 1:10, anti–green fluorescent protein, 1:500
(rabbit, Torrey Pines or chicken, ab13970; Abcam, Cambridge,
MA, USA), anti-Tsp4 (Thbs4), 1:400 (ab211143, made against N-
terminal recombinant fragmentwithin zebrafish Thbs4; Abcam),
and anti-a-Actinin, 1:500 (A7811; MilliporeSigma, Burlington,
MA, USA). Secondary antibodies were either horseradish
peroxidase–conjugated (Vector Laboratories, Burlingame, CA,
USA) or Alexa dye–conjugated (Thermo Fisher Scientific).
Samples for immunohistochemistry were fixed and stained as
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previously described (36). Wholemount pictures were taken on
an Olympus DP70 camera (Tokyo, Japan), and dissected sam-
ples were flat mounted in glycerol and photographed on a Zeiss
Axiophot with Axiocam (Carl Zeiss, Oberkochen, Germany)
using Openlab software (Agilent, Santa Clara, CA, USA).

Alizarin red S and Alcian blue staining

Staining was performed as previously described (37).

Microcomputed tomography

One-year-old fish were fixed in 4% paraformaldehyde for 72 h
anddehydrated to 70%ethanol.A total of 24 fishwere scanned (7
scxa2/2, 3 scxb2/2, 14 siblings) using a Nikon XT H225ST com-
puted tomography (CT) scanner (Nikon, Tokyo, Japan) at a voxel
size of 21 mm (scan settings 130 kV, 150mA, 0.5-s exposure, 3141
projections), and selected regions rescanned at 5 mm (130 kV,
53 mA, 0.7-s exposure, 3141 projections) without additional fil-
ters. Images were reconstructed using CT Pro 3D software
(Nikon). Amira 6.0 (Thermo Fisher Scientific) was used to gen-
erate 3-dimensional volume renders. Soft tissues were discrimi-
nated by treating fixed fish with 2.5% phosphomolybdenic acid
for 14d, aspreviouslydescribed (38), followedbymicroCT (mCT)
scanning. Muscle volume was calculated for a single transverse
slice in2positions in the trunk: the first at the level of themidpoint
of the second-to-last rib-bearing vertebra, and the second at the
midpointof the fourthvertebraposterior to thepreviousposition.
Trunkmusculaturewas segmented andvolume calculatedusing
the Material Statistics module. Nonmuscle volume in that posi-
tion was calculated by subtracting the muscle volume from the
total volume.

Vertebral centrum volumes were calculated for the seventh
and eighth thoracic vertebrae using the CT scans of unenhanced
fish in Avizo 9.3 (Fei, Hillboro, OR, USA) by segmenting the
minimumvolumepossible aroundtheneural canal, excludingall
processes, trabeculae, spines, and ribs in a transverse view. Vol-
ume was calculated using the Material Statistics module. The
entire vertebral volume with ribs was measured on the third
thoracic vertebra using the aforementioned method but by seg-
menting the entire vertebra, including all processes, trabeculae,
spines, andribs.BMDwasquantifiedaspreviouslydescribed (39).

Second harmonic generation imaging

Second harmonic generation (SHG) images were acquired using
10 3 0.3 numerical aperture water dipping lens, 880-nm laser
excitation, and simultaneous forward and backward detection
(440/20) in Leica SP8 AOBS confocal laser scanning microscope
attached to a Leica DM6000 upright epifluorescence microscope
withmultiphoton lasers and confocal lasers allowing fluorescent
andSHGacquisition of the same sample andZ stack.Microscope
parameters for SHG acquisitionwere set as previously described
(40). LASX (Leica Microsystems, Buffalo Grove, IL, USA) was
used for image acquisition.

Histology

Following mCT, fish were rehydrated to PBS with Tween 20 (1X
PBS/0.01%Tween20), decalcified in 1MEDTA-solution for 20d,
embedded in paraffin, and sectioned at 8 mm. Sections were
stained for AB and hematoxylin and eosin (H&E), as previously
described (41). Pictures were taken using a GXML3200B with
GXCAM camera (GX Vision, Stansfield, Suffolk, United
Kingdom).

Body mass index and standard weight calculation
of adult fish

Adult fish from heterozygote incrosses, grown in tanks together,
were anesthetized with tricaine, blotted dry, and weighed nose-
to-baseof tail fin, lengthmeasuredwitha rulerand fin-clipped for
genotyping. Body mass index (BMI) was calculated as weight
(g) 3 length22 (cm). Standard weight (K) was calculated using
Fulton’s formula:K=weight (g)31003 length23 (cm) (reviewed
in ref. 42).

Fish tracking

Two or 3 fish permovie were recorded in 8 L tanks with aNikon
D3200 cameramountedabove the tankat 192031080 resolution,
at 24.96 frames/second (see Supplemental Video and Supple-
mental Fig. S7). Fish motion was quantified using the Modular
Image Analysis plugin (v.0.5.17) (43) for Fiji (44, 45). Initially, the
Fiji Color Deconvolution plugin (46) was used to convert the
RGB-format video frames into grayscale while also enhancing
the contrast of the fish from the background image of the tank.
Next, the median time-projection image was subtracted from all
frames to enhance the image. This image was subsequently
binarized using the intermodes threshold (47) and median-
filtered. Identified objects were size-filtered to remove noise spu-
riously detected as a fish. Individual fish were then tracked be-
tween frames using the Apache HBase implementation (Apache
Software Foundation, Forest Hill, MD, USA) of the Munkres al-
gorithm, linking costs based on centroid separation (48). From
these tracks, instantaneous (frame-to-frame) speeds were calcu-
lated. To remove false tracks, tracks lasting less than 50 frames
were excluded from further analysis. To measure fish curvature,
thebinarizedobjectswere skeletonizedanda spline curve fitted to
this backbone using theApacheMath3 library (49); this permitted
measurement of local curvature and backbone length.

The 100 frames in which the fish were most active were se-
lected, and the instantaneous velocity and range of movement
was compared between 6 homozygous and 6 heterozygous fish.
Range ofmovementwas calculated by subtracting theminimum
curvature from themaximum curvature for each fish. Each point
on the graphs corresponds to the average value for each fish, and
a 2-way ANOVA was performed in GraphPad Prism v.7.04
(GraphPad Software, La Jolla, CA, USA) to compare the mean
value from each heterozygous fish with the mean value from
each homozygous fish.

The software is available and free todownload (Supplemental
File S8).

Statistical analysis

Statistical analyses were performed using GraphPad Prism 7.00
(GraphPadSoftware). The tests usednnumbers, sample sizes are
indicated in the figure legends, and significant P values are
shown on the figures. All tests met standard assumptions, and
the variation between each group is shown. Sample sizes were
chosen based on previous, similar experimental outcomes and
were based on standard assumptions. No samples were ex-
cluded.Randomizationandblindingwerenotusedexceptwhere
the genotype of zebrafishwas determined after experimentation.

Genomic and protein comparison

Clustal alignment and sequence pair distances weremade using
the Lasergene Genomics Suite (DNAStar, Madison, WI, USA).
Analysis of syntenywasmadeusingEnsembl zebrafishzv10 and
the Genomicus Synteny software v.93.01 (50)
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RESULTS

Expression of scxa and scxb during
zebrafish development

Zebrafish have 2 orthologs of the mammalian Scx gene,
scxa and scxb (23), with Scxa and Scxb showing 68.1 and
63.6% aa identitywithmouse Scx and 68.3 and 63.2%with
human SCX, respectively (Supplemental Fig. S2A, B and
ref. 23). Zebrafish scxa is syntenic to mammals, with the
whole scxa gene positioned in the + strand inside intron 3
of bop1 (Supplemental Fig. S2C, Ensembl GRCz11). In
contrast, the scxb locus shows more rearrangements
(Supplemental Fig. S2C, Ensembl GRCz11). We sought to
knowwhere scleraxis genes are expressed in zebrafish and
whether this relates to synteny. Expression of scxa, but not
scxb, has been reported (23, 24, 26, 51). By 72 hpf, both scxa
and scxb mRNAs were detected in tenocytes at the junc-
tionsbetweenskeletal elements andheadmuscles (Fig. 1A,
B). scxbmRNAoverlapped scxamRNA in the attachments
of the Meckel adductor, the sternohyoideus, and ocular
muscles (Fig. 1A, B), similar to expression of tnmd and
col1a2 (23). However, other tendons, such as the man-
dibulohyoid junction and the intermandibularis tendon,
showed strong scxa and weak or no scxb expression (Fig.
1A, B). Strong expression of scxb and weak scxa was evi-
dent in the ocular muscle attachments (Fig. 1A, B). Both
scxaand, to a lesser extent, scxbmRNAsare expressedat 72
hpf and beyond in somitic vertical myosepta (Fig. 1C, D
and unpublished data). Thus, scxa and scxb expression
partially overlaps in cranial tendons and ligaments and
intersomitic MTJs, although scxa mRNA appears more
abundant in both during early larval stages.

During juvenile stages, scxa mRNA was detected in
various skeletal elements, such as the intermuscular ten-
dons at the vertical myosepta, the fin radials, the joints in
the fin bony rays (lepidotrichia) segments at standard
length (SL) 8.0–12.0 (Fig. 1E–G). Sections taken from
stained juveniles show that scxa is not expressed atmuscle
ends at this developmental stage. Intriguingly, the chon-
drogenic marker sox9a mRNA is detected weakly in ribs,
although it was observed strongly in fin endoskeletal ele-
ments (radials) and weakly in exoskeletal elements (fin
rays) (Fig. 1H). scxb was only weakly detected in vertical
myosepta (Fig. 1I, J). The head tendons and ligaments
expressed strong scxa but little scxb at muscle attachments
of the protractor hyoideus and intermandibularis anterior
muscles that expressed the muscle marker tnnc (Fig.
1K–M). Thus, expression data show that scxa is the pre-
dominant Scx gene expressed at embryonic and juvenile
stages.

Lack of Scxa results in defective cranial
tendons and ligaments and
abnormal musculature

In contrast to the tendon and bone phenotypes that have
been reported in mice lacking Scx, morpholino knock-
down of scxa and scxb in zebrafish yielded no obvious
phenotype (11, 14, 18, 23). To analyze a complete loss of
function of scxa and scxb in embryonic and adult fish, we

generated stable mutant lines for scxa and scxb using
CRISPR/Cas9 genome editing (Supplemental Fig. S1).
Scxakg141, scxakg170, and scxbkg107 have premature stops
before the bHLH domain, which is required for DNA
bindinganddimerization.Aswehave foundno consistent
differencebetween the2 scxamutant alleles, henceforthwe
have used the kg170 allele unless otherwise stated and
refer to it as scxa2/2. For simplicity, we refer to scxbkg107

mutants as scxb2/2. Analysis of the expression of scxa and
scxbmRNA in scxamutants shows reduced scxa signal in
mutants compared with siblings, which is indicative of
nonsense-mediated decay (Supplemental Fig. S2D). We
observed no change in either the pattern or levels of ex-
pression of scxb in the scxa2/2 mutants, which suggests
that there is no compensatory up-regulation of scxb (Sup-
plemental Fig. S2E). To investigate Scxa function, we im-
aged 7 days postfertilization (dpf) scxa mutants and
siblings carrying a col2a1a:mCherry transgene by SHG
microscopy, which reveals myosin heads in muscle and
collagen (mainly collagen I) in tendons and ligaments (40),
combined with confocal imaging of the transgene that la-
bels cartilage. No obvious changes to cartilage were ob-
served (Fig. 2A–C). However, SHG revealed decreased
signal in certain tendons and ligaments of scxa mutants,
such as the sternohyoideus tendon, which is suggestive of
poor collagen organization (Fig. 2A, B). To corroborate
these results in scxa mutants, we performed in situ hy-
bridization for tnmd at 3 dpf in an incross of scxa+/2.
Genotyped scxa mutants (9/9) showed reduced tnmd ex-
pression levels in cranial tendons, whereas cleithrum
expression was largely preserved (Fig. 2D). Using
immunostaining for Tsp4b, a marker of tendons and
ligaments (25), scxa2/2 mutant embryos showed disor-
ganization and changes to directionality and shape of
cranial tendons and ligaments, which were variable be-
tween specific tendons and between individual mutants
despite comparable levels of Tsp4b accumulation (8/8 of
analyzed mutants, Fig. 2E–G). Muscle fibers visualized
with MyHC in scxa mutants showed a range of abnor-
malities, such as fibers that extended beyond their nor-
mal boundaries, marked by Tsp4b, fibers that were
misaligned or that crossed themidline, anddisorganized
junctions (Fig. 2E–G and Supplemental Fig. S3A and
Table 1). Similar phenotypes were also seen in scxakg141

mutants (Supplemental Fig. S3B–F and Table 1) and oc-
casionally in scxa+/2 embryos, though at lower pene-
trance (Supplemental Fig. S3A and Table 1). We found
no substantial scxa mutant phenotype in cartilage and
bone by analysis of Tg(col2a1:mCherry) and alizarin red
(AR)/AB staining at 6 and 13 dpf (Supplemental Fig.
S4). Thus, lack of Scxa leads both to disruption of ten-
don and ligament morphology and to defects in the
attachment and orientation of cranial muscle fibers.

Scxa adult fish are viable but show reduced
body size and muscle volume, as well as
abnormal swim behavior

Growth of zebrafish is dependent on feeding rate (52).
To determine whether the cranial musculoskeletal de-
fects in scxamutants have consequences in later life, we
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examined growth of mutant fish and their siblings
reared in the same tank. scxa homozygous mutants
were viable and survived in relatively normal Mende-
lian ratios; 28 of 107 (26% mutants from the whole
incross) adults from a heterozygote incross. Body
measurements of 15-mo adult scxa mutant fish and
their co-reared same-sex siblings showed that they
weigh ;15% less (Fig. 3A). Overall body length was

comparable between the different genotypes, suggesting
that underfeeding was not the main cause for lower
weight (Fig. 3B). Moreover, mutants also show a signif-
icantly reduced BMI and standard weight (K, Fulton’s
body condition factor), measures that would compen-
sate for any differences in overall growth rate (Fig. 3C,
D). We analyzed contrast-enhanced mCT to allow visu-
alization of soft tissue (Fig. 3I). Muscle volume is clearly
smaller in mutants (compare Fig. 3I, J). Quantification of
muscle volume from mCT scans (Fig. 3K, L) shows that
adult scxa mutant fish have significantly lower (;25%
less) muscle volume than their cohabiting siblings (Fig.
3L).Nonmuscle volumedidnot differ between the groups
(unpublisheddata). To testwhether adult scxamutant fish
show altered swim behavior, we developed software to
track videos of adult fish (Fig. 3N, see Materials and
Methods). Both the range of movement (curvature) and
instantaneous velocity of scxamutants were significantly
lower than those of co-reared heterozygotes (Fig. 3O, P).
Thus,we conclude that fish lacking Scxa are thin andhave
reduced muscle and swimming ability compared with
their siblings.

Scxa adult fish lack rib mineralization
and show bone growth and
composition abnormalities

Because juvenile zebrafish express scxa mRNA near ribs
and in other skeletal elements (Fig. 1), and our data from
soft-tissuemCT showedmissing ribs (Fig. 3J),we sought to
investigate indetail the zebrafish scxamutant skeleton.We
performed mCT on 15-mo adult fixed fish (Fig. 4A–D),
which revealed a severe lack of rib growth and minerali-
zation (see below) and multiple bony outgrowths from

Figure 1. Comparison of scxa and scxb expression during
embryonic and juvenile stages. In situ hybridization for indicated
genes shown in lateral (C–J) or ventral view (A, B, K–M). A, B) At
72 hpf, scxa is detected in Meckel’s adductor tendon (mat), the
intermandibularis tendon (imt), the mandibulohyoid junction
(mhj), the sternohyoideus tendon (sht), and hyohyoideus
junction (hhj). scxb is expressed at the sht and hhj, the mat,
and the ocular muscle tendons (ots). C, D) At 72 hpf, scxa and
scxb are expressed weakly at the myosepta (blue arrowheads) and
the caudal fin (black arrows). E–J) In situ hybridization for scxa
(E–G), sox9a (H), and scxb (I, J) at juvenile stages as indicated,
showing expression in the trunk in the posterior vertical
myosepta (arrowheads), and the more anterior myosepta near
the thoracic ribs (arrows), intermuscular bones (white arrow-
heads), fin radials (blue arrowheads), in gills (blue asterisk), and
between fin bony ray segments (purple arrowheads). Sagittal
sections in rib area (E9) and myosepta in anal fin area (E0) show
scxa staining in intramuscular tendons separated from muscle
fiber (mf) ends (yellow arrowheads) by an unstained tendon-
sheath or ECM (brackets). K–M) scxa expression at juvenile
stages in head tendons, including protractor hyoideus tendons
(orange arrow) and intermandibularis anterior tendons (green
arrows), at the attachments of the cranial muscles (labeled
with tnnc) (L): Protractor hyoideus-dorsal and ventral (pr-
h) and the intermandibularis anterior (ima). No scxb expres-
sion is detected in cranial tendons at juvenile stages. Scale bars,
100 mm (A–D, E9, E 0), 0.5 mm (E–M).
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neural and haemal arches in the mutants (Fig. 4B, D). AR
staining showed this phenotype in more detail (Fig. 4F–I
and Supplemental Fig. S5C, D). We also used the mCT to
test whether vertebral thickness differs between the
groups; we extracted the centrum volume through image
segmentation. However, no changes were observed, in-
dicating that Scxa is not essential for vertebral bone
thickness in zebrafish (Supplemental Fig. S5A, C, D).
However, when the bony structure at the same ante-
roposterior level is calculated to include rib andarches, the
mutants showed significant differences (Supplemental
Fig. S5A, C, D). We calculated BMD in the lower jaw

(dentary), the parietal skull, and vertebral centrae. Jaw
BMD is significantly lower in scxa than in its siblings,
whereas skull and vertebral BMD were unchanged (Fig.
4E). Thus, scxa mutants have a range of skeletal and car-
tilaginous abnormalities in both trunk and skull.

The mCT also showed nomineralization in the thoracic
ribs in 7/7 scxa2/2 homozygous mutants, whereas 7/7
scxa+/+ and 4/4 scxa+/2 siblings had normal ribs (Fig.
4A–D). AR staining on similar age adults also revealed a
lack ofmineralization in ribs in 6/6 scxamutants, whereas
7/7 scxa+/+ showed normal ribs (Fig. 4F–I). Most juvenile
mutants stainedwithARalso lackedmineralization (7 of 9

Figure 2. Cranial tendons, ligaments, and muscles of scxa2/2 mutants are abnormal and disorganized. A–C) SHG imaging shows
both collagen arrangement in tendons and ligaments and myosin heads in muscle (light blue) combined with confocal imaging
of the transgene TgBAC(col2a1a:mCherry)hu5910 (cartilage, purple) of 7 dpf scxa2/2, scxb2/2, and wild-type (+/+) larvae. Shown
are representative maximum projection images of the stacks (A–C) and single scans at comparable Z positions (A9–C9).
Decreased SHG signal was observed in the ligaments connecting the Meckel’s and palatoquadrate cartilages of scxa and scxb
mutants (white arrows), and in the sternohyoideus tendon (yellow arrows) connecting the sternohyoideus muscle and the
basihyal cartilage (asterisk) of scxa mutants. D) In situ hybridization for tnmd for 3 dpf scxa2/2 and their siblings (+/+) showing
reduced tnmd mRNA levels in scxa mutant, such as the sternohyoideus tendon (black arrowhead) and the ligaments connecting
the Meckel’s and palatoquadrate cartilages (red arrowhead). Expression at the base of the cleithrum is maintained (asterisk).
E–G) Confocal stacks of 4 dpf embryos from a scxa+/2 incross, immunostained for MyHC (A4.1025, green) and Tsp4b (red).
Specific defects in tendon structure and directionality in scxa mutants (white rectangles) (E) are shown in higher magnification
panels for mandibulohyoid junction (E9, F 9) and ceratohyal tendon (E 0, F 0). Scxa mutants show varied array of muscle defects,
such as abnormal overextension or crossing the midline of muscle fibers (F, G compared with E) and detached fibers in
interhyoides and hyohyoides (arrowheads, F). The magnified area (G9–G 09) shows ectopic fiber in the adductor mandibularis
(white arrow, G9), ectopic misguided fiber from the interhyoides is crossing the midline and growing toward the interhyoides
across the midline (yellow arrow, G0), and ectopic extention of sternohyoides tendon (blue arrowhead) is attracting
overextended fibers (green arrowhead). Am, adductor mandibularis; cht, ceratohyal tendon; hh, hyohyoides; ih, interhyoides;
ima, intermandibularis anterior; imp, intermandibularis posterior; mat, Meckel’s adductor tendon; mc, Meckel’s cartilage; mhj,
mandibulohyoid junction; pq, palatoquadrate cartilage; pqat, palatoquadrate adductor tendon; sh, sternohyoideus; sht,
sternohyoides tendon. All images in ventral view, anterior to left. Scale bars, 100 mm, except F 9–F 0 and G9–G 09, 20 mm.
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analyzed mutants), whereas the remaining 2 showed a
milder phenotype with uneven mineralization in which
some ribs were missing and others displayed residual
mineralization (see Fig. 5). No siblings lacked minerali-
zation (0 of 22 analyzed siblings). However, close exami-
nation ofmutants that lackedmineralization revealed that
some unstained, glossy, rib tissue was present (Fig. 4J),
suggesting that Scxa is required for normalmineralization
or growth, rather than formation of ribs per se. Indeed,
H&E combined with AB staining on adult sections un-
veiled rib-like structures between the myotomes (Fig. 4K,
L). This histologic analysis also revealed an accumulation
of fibrous tissue in the intervertebral disk (IVD), suggest-
ing abnormality with the notochord sheath cell layer
(Fig. 4M).

Scxa mutants have abnormal rib
mineralization from patterning stage

To better understand the nature of the rib growth and
mineralization defect, we stained juveniles with AR and
AB at various stages around the time when ribs are
formed. Ribs develop anteriorly to posteriorly beginning
at 5.8mmSL, as seen byARorCalcein staining (53, 54). At
juveniles of SL 5.8mm, although nomineralized ribswere
detected in any genotype, the arrangement of the vertical
myoseptum and the rib region appeared abnormal in the
mutants (Fig. 5A; 2 of 2 scxamutants analyzed). Juveniles
reaching SL 6.5 mm had initiated mineralization in the
anterior ribs (ribs 5 and 6), but scxa mutants at that stage
lack mineralized ribs. However, the Weberian ossicles lo-
cated anterior to the ribs developed normally (Fig. 5B; 4 of
4 larvae examined). In SL 10.5-mm juveniles, ribs had

formed in siblings (Fig. 5C), but scxamutants either lacked
mineralized ribs (Fig. 5C; 3 of 5 mutants analyzed) or
showed a milder phenotype with some ribs missing and
others small, bent, and twisted (Fig. 5D; 2 of 5 mutants
analyzed) as occasionally found in adults (Supplemental
Fig. S5E). These defective ribs are reminiscent of the ribs in
mutants in which altered collagen composition causes
weak and bent ribs that may reflect a history of repeated
fracture repair (55). These observations show that scxa
mutants have defects in the tendon-like regions between
the myotomes where ribs form already at the patterning
stage rather than it being a remodeling in response to later
events.

Scxa mutants maintain normal MTJs in
the somites

During development, muscle fibers from each side of the
vertical myoseptal somite border align, connect, and se-
crete ECM proteins that create a distinctive extracellular
MTJ structure. Anchorage to this MTJ allows fibers to
transmit andwithstandcontraction forces (reviewed in ref.
56). Many tendonmarkers are expressed at theMTJ either
by the neighboring muscle cells or by fibroblast-like cells
proposed to be tenocytes (22). Indeed, by 4 dpf we ob-
served fibroblast-like cells with the matrix protein Tsp4b
surrounding their nuclei and with long processes
extended into the myosepta (Supplemental Fig. S6A).
Given that scxa is expressed early in theMTJ (Fig. 1A and
ref. 23), we tested whether defective early MTJ patterning
might underlie the rib and muscle defects. In situ hybrid-
ization for xirp2a mRNA, a marker for somitic MTJ, for
embryos from a scxa+/2 incross at 52 hpf showed reduced

TABLE 1. Analysis of head muscle phenotype in scleraxis mutants.

Phenotypea +/+ scxa+/2 scxa2/2 scxb2/2 scxa2/2 ;scxb2/2

Intermandibularis anterior
Overextension 0/10 0/14 1/8 0/5 1/4
Ectopic fibers 0/10 0/14 1/8 0/5 0/4
Muscle fibers misaligned 0/10 0/14 2/8 0/5 2/4

Intermandibularis posterior
Overextension 2/10 5/14 8/8 2/5 4/4
Ectopic fibers 0/10 1/14 1/8 0/5 4/4
Muscle fibers crossing midline 0/10 1/14 6/8 1/5 4/4

Interhyoideus
Overextension 1/10 5/14 5/8 0/5 4/4
Ectopic fibers 0/10 1/14 2/8 0/5 4/4
Muscle fibers crossing midline 0/10 2/14 5/8 0/5 3/4

Hyohyoideus
Overextension 0/10 2/14 6/8 0/5 4/4
Ectopic fibers 0/10 2/14 2/8 0/5 4/4
Muscle fibers crossing midline 0/10 5/14 6/8 2/5 4/4

Sternohyoideus
Overextension 0/10 0/14 0/8 0/5 0/4
Ectopic fibers 0/10 0/14 0/8 0/5 0/4
Muscle fibers crossing midline 0/10 1/14 0/8 0/5 1/4

Adductor mandibularis
Overextension 0/10 1/14 4/8 0/5 0/4
Ectopic fibers 0/10 2/14 3/8 1/5 0/4

aAnalyzed at 4 dpf in embryos from scxa+/kg170, scxb+/kg107, or scxa+/kg170;scxb+/kg107 incrosses from
immunohistochemistry of Tsp4b and MyHC (A4.1025).
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Figure 3. Lack of Scxa in adults affects body measurements and swim behavior. A–H) Weight, length, BMI, and standard weight
comparison between mutants and sibling adult fish from a scxa+/2 incross (13 siblings and 7 scxa2/2 males, 18 siblings and 6
scxa2/2 females, A–D) and a scxb+/2 incross (21 siblings and 5 scxb2/2 males, 6 siblings and 2 scxb2/2 females, E–H). Males and
females are presented separately as were found significantly different. I, J ) Contrast-enhanced mCTs to show soft tissue of scxa2/2

mutant (J–J 0) and a +/+ sibling (I–I 0). Magnified scans show lack of ribs (black arrows) in the mutant. I 0, J 0) Transverse optical
sections at indicated positions, where dashed arrows indicate the vertebrae. K) Myotome volume from co-reared similar-length
fish are calculated from scans by creating a virtual steak between 2 ribs (red area, see Materials and Methods). L, M)
Quantification of muscle volume in scxa2/2 adult mutants (L) and scxb2/2 (M) and their respective siblings. N–P) Swimming
performance was calculated from videos taken from above the tank [schematic drawing in panel (N), see also Supplemental
Video and Supplemental Fig. S7], and the range of movement (curvature, M) and instantaneous velocity (N) were calculated as
detailed in the Materials and Methods. Two-way ANOVA statistics with Sidak’s post hoc tests were performed (A–H). Unpaired t
test with Welch’s correction (L, M) and 2-way ANOVA (O, P). Significant P-values indicated on graphs.
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expression in 9 of 9 genotyped scxa mutants (Fig. 6A) but
not in siblings (17/17). At 72 hpf, tnmd mRNA, a marker
for maturing tenocytes, was also decreased in scxamutant
larvae (9of 9genotypedmutants) butnot in siblings froma
similar cross (Fig. 6B). In contrast, immunohistochemistry

for the Tsp4b protein, which controls matrix assembly in
the MTJ (25), yielded no detectable change in level or
distribution in scxa mutants (Fig. 6C and Supplemental
Fig. S6B; 5 of 5 analyzedmutants).We conclude that some
but not all MTJ markers are reduced in scxamutants.

Figure 4. Adult scxa homozygous
mutants have skeletal abnormal-
ities. A–E) Three-dimensional
volumetric isorenders from mCt
data of scxa2/2 and wild-type
sibling showed absence of min-
eralized ribs (green dashed line
above the rib region) (C, com-
pared to A), and protruding jaws
(green arrows) in mutants. Tho-
racic ribs region was magnified
to show details of the vertebrae
(B, D). Small bony structures
were observed branching from
the haemal arches (green arrow-
heads), and vertebrae misalign-
ments were often present (red
dashed arrow) in scxa mutants.
E) BMD values were calculated
from 3 distinctive bones: jaw
(green arrows in A, C), verte-
brae, and the parietal bone
(yellow arrowhead in A, C).
One-way ANOVA statistics with
Tukey’s post hoc test performed,
P values are as indicated. F–J)
AR-stained adult scxa2/2 mu-
tants show no signal in ribs (H,
under green line, compared
with F), and neural (black ar-
rowheads) and haemal arches
(yellow arrowheads) have exten-
sive bony growth (vertebrae
15–19 magnified in G, I). Fi-
brous, almost transparent ribs
are seen in high magnification
(black arrows, J), with the odd
mineralized rib tissue (red ar-
rowhead in H, J). The area
rostrally to rib 5 is formed
normally. Ps/r4, parapophysis
and rib 4. K–M) Adult wild-type
and scxa mutant zebrafish sagit-
tal (KK9,LL9) and transversal
(MM9) paraffin sections stained
with H&E and AB. Existing rib
structure in scxa mutant is short,
thin, and wavy. The IVD is
shown in MM9. The notochord
string (ns) connecting the dorsal
and ventral of the V shape is
normal. However, the IVD is
enriched with fibrous tissue
(more purple, green arrow-
heads). M, muscle; n, noto-
chordal cells. Scale bars, 1 mm
(A–D, F–J), and 100 mm (K–M).
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To determine whether MTJ defects were secondary to
muscle defects at these early stages, scxa mutants were
bred into the transgenic Tg(actc1b:egfp)zf13. Somite muscle
architecture appearednormalas seenbyMyHC,a-actinin,
and green fluorescent protein distribution (Fig. 6C and
Supplemental Fig. S6D). TheECMprotein laminin and the
fiber-end–associated cytoskeletal link protein dystrophin
also did not distinguish mutants from their siblings
(Supplemental Fig. S6D and unpublished data). Thus,
early myogenesis appears normal in scxamutants.

Scxb mutants are viable and show no
obvious defects

We also examined scxb homozygous mutants at embry-
onic, juvenile, and adult stages. During embryonic stages,

scxb mutants show neither tendon or muscle craniofacial
abnormalities (Fig. 2C and Supplemental Fig. S3G and
Table 1) nor difference in AR/AB staining at 6 dpf (un-
published results). Somitic MTJ of scxb mutant embryos
also developed normally as seen by normal Tsp4b distri-
bution in the myosepta (5 of 5 mutants and 13 of 13 gen-
otyped sibling larvae), and somitic muscle volume and
structure was unchanged (MyHC; Fig. 3M and Supple-
mental Fig. S6C). Adult scxb mutants are viable and sur-
vive in normal numbers (9 of 39; 23% mutants from a
heterozygote incross). Measurement of 4- and 12-mo-old
scxb mutants showed no significant differences between
scxb mutants and siblings in weight, length, BMI, and
standardweight (Fig. 4D–F and unpublished results). The
skeleton was evaluated by mCT (3 of 3) and AR (4 of 4,
Supplemental Fig. S5F), and themutantswere shown tobe
normal and indistinguishable from siblings (Supplemen-
tal Fig. S5F, G and unpublished results). Thus, the lack of
Scxb has no detectable effect on the development of the
zebrafish musculoskeletal system.

Lack of Scxa and Scxb leads to lethal
jaw defects

Wegenerateddoublemutants from incrosses of scxa+/kg170;
scxb+/2. Doublemutantswere indistinguishable from their
siblings before 4 dpf andwere viable in normalMendelian
numbers up to early juvenile stages (7 of 138 from total
number of genotyped embryos at 6–13 dpf, x2 test P =
0.567). Immunostaining for Tsp4b andMyHC showed no
phenotypic abnormality in the MTJ (Fig. 7D compared
with Fig. 6C), showing that scxa and scxb combined func-
tion is not essential for early somite MTJ development.

In embryos from incrosses of scxa+/kg170;scxb+/2, a subset
had abnormal lower jaw, which hung open from 4 dpf,
(Fig. 7A, B). This phenotype showed in 22 of 533 embryos
(4.1% of all embryos), of which there were scxa2/2;scxb2/2

(16 of 22) and scxa2/2;scxb+/2 (6 of 22,;10% penetrance).
No normal embryos (25 genotyped) were double mutant,
but 1 embryo was scxa2/2;scxb+/2. The jaw morphology
defect caused reduced jawmovement, although theywere
motile and able to swim (unpublished results). At 13 dpf,
scxa2/2;scxb2/2 larvae had a similar jaw phenotype and
severe growth retardation (3 of 45, 6.6% from all embryos;
Fig. 7C), and by 34 dpf, no surviving scxa2/2;scxb2/2 fish
were obtained (0 of 41, 0% from all embryos). This was
confirmed by an incross of scxa+/kg141;scxb+/2 that yielded
no double mutants (0 of 63, 0% from whole surviving
incross, tested at 12 mo of age). Overall, lack of scxa2/2;
scxb2/2 fish is significant (x2 = 0.008), indicating that they
die in theperiodbetween2and5wkofage. scxa2/2;scxb+/2

fish were found in expected Mendelian numbers for both
incrosses.

To further investigate the hanging jaw phenotype, we
stained 6 dpf larvae from an incross of scxa+/kg170;scxb+/2

for AR/AB (Fig. 7E–G). scxa2/2;scxb2/2 fish show a clear
changeofpositionof theMeckel’s cartilage (Fig. 7B,E). The
joint at the anterior tip of the Meckel’s cartilage contains
many rounded cells that are undifferentiated as opposed
to elongated mature cartilage in siblings (compare Fig.

Figure 5. Scxa is is required for rib mineralization and its
patterning. AR staining for fish from a scxa+/2 incross at the
indicated juvenile stages. A) At SL 5.8 mm, increased differential
interference contrast (DIC) shows that the junction region
between muscle and rib (yellow arrows) is already abnormal
(AA9). B) At SL 6.5 mm, the first anterior ribs (r5 and r6) are
lacking (asterisks in B9, compared with B). C) A severe lack of
mineralized ribs (black asterisks) and mineralized rib fragments
(white arrowhead) is seen at SL 10.5 mm (C9, compared with
C). D) In another mutant (D), some ribs are missing (asterisks
in D), whereas others are highly fractured and healed (r5–r9
magnified and marked by red arrowheads in D9). Note that r4 is
formed normally (arrows in B–D). All scale bars, 100 mm.
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7F,G). All double mutants (6 of 6) showed a severe re-
duction in Tsp4b and disorganization in cranial tendons
and ligaments, most severely in the mandibulohyoid
junction between 4 and 13 dpf (Fig. 7I). Functional muscle
hasbeenshown tobe required fornormal jawmorphology
(57, 58). We found that scxa2/2;scxb2/2 larvae had more
severe defects in jaw muscles, particularly in the inter-
mandibularis posterior and interhyoideus muscles. A
largeproportionof the intermandibularis posteriormuscle
fibers from either side of themidline extended beyond the
mandibulohyoid junction, where they normally end, until
their displaced meeting, whereas others appeared to
change angle and also be part of the interhyoideusmuscle
(compare Fig. 7H, I and Table 1). Thus, lack of both Scx
genes in zebrafish cause substantial tendon, muscle, and
cartilage defects that result in paralysis of the jaw with
lethal consequences.

DISCUSSION

The findings described here provide genetic demonstra-
tion of 3 major points. Firstly, that scxa is required for
correct skeletal development, including rib growth and
mineralization, morphology of vertebral arches, normal
swimming behavior, and trunk muscle composition.

Secondly, scxa mutation leads to embryonic defects in
cranial tendon formation and muscle misalignment.
Thirdly, whereas loss of scxb alone does not lead to severe
phentoypes, scxb is required in the absence of scxa because
loss of both leads to lethal jaw paralysis. From this we
conclude that scxa and scxb have overlapping functions in
tendon formation.

scxa and scxb expression and function during
embryonic stages

In addition to confirming the expression of scxa in the
craniofacial tendon precursors and the MTJ (23, 24), we
demonstrate that scxamRNAis expressed in the full extent
of the vertical myosepta at juvenile stages. Loss of Scxa
affects the structure and shape of various tendons, most
notably ones connecting the jaw muscles to the jaw. This
leads to abnormal connections, ectopic growth, and mis-
alignment of fibers of the craniofacial musculature. scxa
mutants are viable, however, surviving to adulthood de-
spite a range of phenotypes. Although craniofacial carti-
lage and bone appear normal in embryos, our mCT data
show significantly lower BMD in jaws of adult scxa mu-
tants. The jaw bones mineralize much later than in our
larval analyses. Thismay reflect changes tomuscle activity

Figure 6. Scxa mutants have reduced levels of
tendon markers, but somitic MTJs appear
normal. A, B) In situ hybridization for xirp2a
at 52 hpf (A) and tnmd at 3 dpf (B) for scxa2/2

and their siblings (+/+), lateral view, anterior to
left. B) The main image shows the anterior
somites, inset-whole embryo. Both xirp2a and
tnmd mRNA levels are reduced at the MTJs at
the somitic borders (arrowheads). C) Confocal
stacks of immunodetection of MyHC (A4.1025)
and Tsp4b in somites 11–14 of 4 dpf embryos of
scxa2/2 and siblings showing normal distribu-
tion of Tsp4b and normal muscle structure. All
scale bars, 100 mm.
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that is due to the above tendon and muscle phenotypes
leading to changes in themechanical load of certain areas.
Mechanical loadinghasbeenpreviously shown inhumans
and fish toaffectboneproperties, specificallyBMD(59, 60).
We show that scxb is expressed in a subset of cranial ten-
dons, and weakly in the intersomite MTJs. Loss of Scxb
alone led to no obvious phenotype in the presence ofwild-
type Scxa. However, mutation of scxb in scxamutants ex-
acerbates the phenotype, such that muscles are mis-
aligned, extend into differentmuscles, and lack attachment
to the skeleton. This leads to jaw paralysis, resembling
the flaccid paralysis observed upon treatment with tri-
caine mesylate (58). We observe growth retardation and
death in the early juvenile stages, likely from starvation.
We, and others, have previously shown that periods of
larval immobility affect the formation of jaw skeletal
elements and joints (57, 58, 61, 62). Similarly, we show
that tendon malformation can affect the muscle and
the morphogenesis of the jaw, indicating synergy in

development of the cranialmusculoskeletal system. Some
of the defects are reminiscent of the zebrafish cyp26b1
mutant tendon phenotypes (24). In cyp26b1 mutants,
tenoblasts fail to condense into nascent scxa-expressing
tendons, affecting muscle projection and misdirecting it.
Our data show that scx function in tenoblasts contributes
to thematurationof cranial tendons.Noneof thedescribed
mouse loss-of-functionmodels reported head phenotypes
(11, 14). However, Scx is expressed in pharyngeal arches
and facial tendons of mouse embryos (8–10), and other
mutations affecting mouse tongue muscle tendons resul-
ted in tongue muscle abnormalities and dysmorpho-
genesis (63, 64). Facial tendons in mice, chicks, and
zebrafish have a common origin from cranial neural crest
cells (8, 23, 27). They are also similar in function, although
different fish, birds, and mammals have varied feeding
strategies and mandibular morphology (65, 66) such that
cranial phenotypes stemming from tendon defects may
differ between species.

Figure 7. Scxa;scxb double mutants have a jaw phenotype and severe musculoskeletal defects. A–C9) Live transmitted light and red
fluorescent images in lateral view, anterior to left of genotyped scxa2/2;scxb2/2 double mutants (A9–C9) compared with siblings
(A–C, shown is scxa+/2scxb+/2). Mutants show a hanging open jaw. The col2a1:mCherry transgene (B) shows the dropping Meckel’s
cartilage (mc). At 13 dpf, fish are much smaller than siblings (whole-fish insets in C). D) Confocal stacks of immunodetection of
MyHC (A4.1025) and Tsp4b in 4 dpf embryos of scxa2/2 scxb2/2 showing normal distribution of Tsp4b and normal muscle
structure (compare with Fig. 6C). E–G9) AB/AR staining for cartilage and bone for scxa2/2scxb2/2 (E9–G9) and sibling from the
same cross (E–G) shown in lateral (E) and ventral (F, G) views that show the hanging jaw phenotype. The magnified area from
mc shows many less differentiated rounded cells at its most anterior tip, near the joint (arrow, G9) compared with elongated
mature cells in sibling (arrow, G). H–I9) Confocal stacks showing immunodetection of cranial muscles (MyHC, A4.1025) and
tendons (Tsp4b) of 4 dpf embryos of scxa+/2; scxb+/2 incross in ventral view. Tsp4b is highly reduced in tendons and ligaments of
double mutants as shown for mandibulohyoid junction (mhj) (magnified area, II9). Many muscle fibers in scxa2/2; scxb2/2

extend the length of the intermandibularis posterior (imp) and the interhyoideus (ih) (yellow arrowheads, I9), whereas others
extend far beyond their normal end at the mhj until their meeting point (white arrowheads, I9). All scale bars, 100 mm. Hhj,
hyohyoideus junction; ih, interhyoides; ima, intermandibularis anterior; imt, intermandibularis tendon; mat, Meckel’s adductor
tendon; mc, Meckel’s cartilage; pq, palatoquadrate cartilage; sh, sternohyoideus; sht, sternohyoideus tendon.
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The role that Scxa and Scxb has in the somitic MTJs
seems to be limited at embryonic stages.Wedetectedmild
down-regulation of tendon markers and downstream
targets, such as tnmd and collagens, which is comparable
with mammals and birds (11–14). However, we found no
evidence for down-regulation of key components of the
ECM, such as thbs4b and laminin and functional embry-
onic phenotype, neither did we detect damaged muscle,
loss of sarcomeric structure, or somitic boundary com-
promise in either the single or double mutants at larval
stages. This contrasts with the phenotype observed upon
loss of the dystrophin-associated glycoprotein complex
components (reviewed in refs. 56, 67). Thismay reflect low
levels of expression of scxa and scxb at embryonic stages,
but other genes, likely in the fibers themselves, could
control these ECM components at the somitic MTJs. It
suggests that the muscle-dependent dystrophin-
associated glycoprotein complex and integrin com-
plexes are independent from tendon development and
are sufficient to connect the somitic muscle blocks even
when the tendons are impaired, thus preventing damage
at least during embryonic stages.

Scleraxis function in rib mineralization

Our data show that Scxa is strongly expressed in the in-
tramuscular tendons adjacent to thedeveloping ribs and is
essential for rib growth and mineralization. In scxa mu-
tants, we see severe defects in rib structure, such that
mutants lack mineralized ribs. The tissue appears to be-
come fibrous rather than bony. scxa mutants display
changes to the structure of the vertebral arches, which are
wide and irregular despite the normal myotome pattern-
ing seen at larval stages.

Many studies have indicated that all parts of the ribs are
derived from the sclerotome compartment of the somites
(68–71),whereasother studies have suggested that the ribs
can be divided into 3 regions and that rib development
also depends on the dermomyotome (72, 73). In addition,
manipulations in chicks, which led to loss of Scx expres-
sion, such as separating the ectoderm physically from so-
mites or changes to MKP3 levels affecting ERK signaling
strength, resulted in defective distal rib development (74,
75). Although inmice Scx is expressed in rib primordia (8,
11, 13), the ribs and the tendons that connect them to the
intercostalmuscleswere unaffected in 1 Scx2/2 allele (11),
and the rib cagewasdecreased in size for theScxcre/cre allele
(14). Conditional inactivation of Sox9 in Scx+Sox9+ cells in
ScxCre;Sox9flox/flox mice, caused a loss of all but the proxi-
mal rib cage (76). Mammalian tendon-bone attachments,
including the patella, deltoid tuberosity, olecranon, and
other eminences, express bothSox9andScx (16, 76, 77). It is
unclear if scxa is expressed in rib precursors in fish and
whether it has a similar role inmineralization of the ribs as
in mineralization of these mammalian eminences (11, 14,
16, 17, 76, 77). Function may also be maintained in the
distal parts of the ribs in some amniotes. Ribs protect in-
ternal organs in fish and amniotes. The development of
lungs and the requirement to protect the respiratory sys-
tem with a strong bony rib cage may have shifted rib

development to bemore dependent on Sox9 in land-living
animals, and so affecting rib composition and strength.

Interestingly, we found that zebrafish lacking rib
bone are viable, but their swimming performance is
altered. This may indicate that the ribs play a mechan-
ical role in swimming. Indeed, some studies have
highlighted correlations in intramuscular ossification in
fish that differ in their swimming modes (78, 79). The
reduced volume of trunkmusculature and bodyweight
in scxa adult mutants could be linked to the altered
swim behavior seen in the mutants. This, in turn, could
be due to musculoskeletal attachments to the ribs and
other intramuscular bones between the myomeres that
are not capable of transmitting the full force from
muscle contractions. Alternatively, altered intramuscular
attachments in the trunk or abnormal fin attachments
could alter both swim performance and preclude rib
development. Although scxa;scxb double mutants are
smaller in length and have paralyzed jaw, both linked to
reduced feeding, scxa mutants have normal standard
length, and their jaw movement seemed normal. How-
ever, we cannot rule out the possibility that reduced
feeding affects the lowerweight of scxamutants, which in
turn may be due to the mutants being outcompeted by
their siblings.

Both our expression and functional data points to a
greater role for scxa than for scxb in both head and trunk
development, especially at juvenile stages. This likely re-
flects the high synteny of scxa, but not scxb, to the mam-
malian orthologs, likely keeping ancestral regulatory
elements intact. However, Scxb protein is very similar to
Scxa protein: a 70.8% identity between the 2 proteins, al-
most identical bHLH domain (Supplemental Fig. S2A, B),
overlapping expression, and the ability to replace the
function of the other to some extent.

In summary, we have shown that Scx has an essential
role in the normal development of the musculoskeletal
system in fish. Its essential function in differentiation and
maturation of tendons, and in ossification of skeletal ele-
ments that express Sox9 and Scx, are conservedwith other
vertebrates. Zebrafish are thus a usefulmodel to study the
close relationship of muscle, tendon, and bone in devel-
opment and disease of joints.
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