212 research outputs found

    Dominant mutations of the Notch ligand Jagged1 cause peripheral neuropathy

    Get PDF
    Notch signaling is a highly conserved intercellular pathway with tightly regulated and pleiotropic roles in normal tissue development and homeostasis. Dysregulated Notch signaling has also been implicated in human disease, including multiple forms of cancer, and represents an emerging therapeutic target. Successful development of such therapeutics requires a detailed understanding of potential on-target toxicities. Here, we identify autosomal dominant mutations of the canonical Notch ligand Jagged1 (or JAG1) as a cause of peripheral nerve disease in 2 unrelated families with the hereditary axonal neuropathy Charcot-Marie-Tooth disease type 2 (CMT2). Affected individuals in both families exhibited severe vocal fold paresis, a rare feature of peripheral nerve disease that can be life-threatening. Our studies of mutant protein posttranslational modification and localization indicated that the mutations (p.Ser577Arg, p.Ser650Pro) impair protein glycosylation and reduce JAG1 cell surface expression. Mice harboring heterozygous CMT2-associated mutations exhibited mild peripheral neuropathy, and homozygous expression resulted in embryonic lethality by midgestation. Together, our findings highlight a critical role for JAG1 in maintaining peripheral nerve integrity, particularly in the recurrent laryngeal nerve, and provide a basis for the evaluation of peripheral neuropathy as part of the clinical development of Notch pathway-modulating therapeutics.This article is freely available via Open Access. Click on the publisher URL to access it via the publisher's site.G1002279/MRC_/Medical Research Council/United Kingdom R25 NS065729/NS/NINDS NIH HHS/United States Z01 AG000949/ImNIH/Intramural NIH HHS/United States R01 NS062869/NS/NINDS NIH HHS/United States F31 NS105404/NS/NINDS NIH HHS/United Statespre-print, post-print, publisher's version/PD

    MNS1 variant associated with situs inversus and male infertility

    Get PDF
    Ciliopathy disorders due to abnormalities of motile cilia encompass a range of autosomal recessive conditions typified by chronic otosinopulmonary disease, infertility, situs abnormalities and hydrocephalus. Using a combination of genome-wide SNP mapping and whole exome sequencing (WES), we investigated the genetic cause of a form of situs inversus (SI) and male infertility present in multiple individuals in an extended Amish family, assuming that an autosomal recessive founder variant was responsible. This identified a single shared (2.34 Mb) region of autozygosity on chromosome 15q21.3 as the likely disease locus, in which we identified a single candidate biallelic frameshift variant in MNS1 [NM_018365.2: c.407_410del; p.(Glu136Glyfs*16)]. Genotyping of multiple family members identified randomisation of the laterality defects in other homozygous individuals, with all wild type or MNS1 c.407_410del heterozygous carriers being unaffected, consistent with an autosomal recessive mode of inheritance. This study identifies an MNS1 variant as a cause of laterality defects and male infertility in humans, mirroring findings in Mns1-deficient mice which also display male infertility and randomisation of left-right asymmetry of internal organs, confirming a crucial role for MNS1 in nodal cilia and sperm flagella formation and function.This article is freely available via Open Access. Click on the Publisher URL to access the full-text

    A quantitative LC-MS/MS method for analysis of mitochondrial -specific oxysterol metabolism

    Get PDF
    Oxysterols are critical regulators of inflammation and cholesterol metabolism in cells. They are oxidation products of cholesterol and may be differentially metabolised in subcellular compartments and in biological fluids. New analytical methods are needed to improve our understanding of oxysterol trafficking and the molecular interplay between the cellular compartments required to maintain cholesterol/oxysterol homeostasis. Here we describe a method for isolation of oxysterols using solid phase extraction and quantification by liquid chromatography-mass spectrometry, applied to tissue, cells and mitochondria. We analysed five monohydroxysterols; 24(S)-hydroxycholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7 ketocholesterol and three dihydroxysterols 7α-24(S)dihydroxycholesterol, 7α-25dihydroxycholesterol, 7α-27dihydroxycholesterol by LC-MS/MS following reverse phase chromatography. Our new method, using Triton and DMSO extraction, shows improved extraction efficiency and recovery of oxysterols from cellular matrix. We validated our method by reproducibly measuring oxysterols in mouse brain tissue and showed that mice fed a high fat diet had significantly lower levels of 24S/25diOHC, 27diOHC and 7ketoOHC. We measured oxysterols in mitochondria from peripheral blood mononuclear cells and highlight the importance of rapid cell isolation to minimise effects of handling and storage conditions on oxysterol composition in clinical samples. In addition, in vitro cell culture systems, of THP-1 monocytes and neuronal-like SH-SH5Y cells, showed mitochondrial-specific oxysterol metabolism and profiles were lineage specific. In summary, we describe a robust and reproducible method validated for improved recovery, quantitative linearity and detection, reproducibility and selectivity for cellular oxysterol analysis. This method enables subcellular oxysterol metabolism to be monitored and is versatile in its application to various biological and clinical samples.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.K Borah and HR Griffiths acknowledge INClusilver funded by the European Union, grant number H2020–INNOSUP‐2017‐2017 731349; NeutroCure funded by the European Union, grant number H2020-FETOPEN-01-2018-2019-2020 861878 and Faculty Research Support Fund (FRSF) fund from the University of Surrey 2019–2020. K Borah also acknowledges support of training grant 2019 Ref T022 from VALIDATE network. I Ampong, D Gao and HR Griffiths acknowledge funding from BBSRC (China Partnering Award BB/M028100/2. D Gao acknowledges funding from the National Natural Science Foundation of China(NFSC)(GrantNo.81873665).IHKD acknowledges funding from Alzheimer's research UK midlands network grant 2019. AH Crosby and EL Baple acknowledge support from the Hereditary Spastic Paraplegia Support Group and The Diamond Jubilee Doctoral Scholarship Fund.published version, accepted version, submitted versio

    Of detectability and camouflage: evaluating Pollard Walk rules using a common, cryptic butterfly

    Get PDF
    Abstract Estimating distribution and abundance of species depends on the probability at which individuals are detected. Butterflies are of conservation interest worldwide, but data collected with Pollard walks—the standard for national monitoring schemes—are often analyzed assuming that changes in detectability are negligible within recommended sampling criteria. The implications of this practice remain poorly understood. Here, we evaluated the effects of sampling conditions on butterfly counts from Pollard walks using the Arctic fritillary, a common but cryptic butterfly in boreal forests of Alberta, Canada. We used an open population binomial N‐mixture model to disentangle the effects of habitat suitability and phenology on abundance of Arctic fritillaries, and its detectability by sampling different conditions of temperature, wind, cloud cover, and hour of the day. Detectability varied by one order of magnitude within the criteria recommended for Pollard walks (P varying between 0.04 and 0.45), and simulations show how sampling in suboptimal conditions increases substantially the risk of false‐absence records (e.g., false‐absences are twice as likely than true‐presences when sampling 10 Arctic fritillaries at P = 0.04). Our results suggest that the risk of false‐absences is highest for species that are poorly detectable, low in abundance, and with short flight periods. Analysis with open population binomial N‐mixture models could improve estimates of abundance and distribution for rare species of conservation interest, while providing a powerful method for assessing butterfly phenology, abundance, and behavior using counts from Pollard walks, but require more intensive sampling than conventional monitoring schemes

    Datasets of whole cell and mitochondrial oxysterols derived from THP-1, SH-SY5Y and human peripheral blood mononuclear cells using targeted metabolomics

    Get PDF
    The raw datasets of oxysterol quantifications from whole cell and mitochondrial fractions of THP-1 monocytes and macrophages, neuronal-like SH-SH5Y cells and human peripheral blood mononuclear cells are presented. Oxysterols were quantified using a new liquid chromatography-mass spectrometry (LC-MS) and multiple reaction monitoring analysis published in the article “A quantitative LC-MS/MS method for analysis of mitochondrial-specific oxysterol metabolism” in Redox Biology [1]. This method showed improved extraction efficiency and recovery of mono and dihydroxycholesterols from cellular matrix. The datasets derived from the three cell lines are included in the appendix. These datasets provide new information about the oxysterol distribution in THP-1 monocytes and macrophages, SH-SY5Y cells and peripheral blood mononuclear cells. These datasets can be used as a guide for oxysterol distribution in the three cell lines for future studies, and can used for future method optimization, and for comparison of oxysterol recovery with other analytical techniques

    HERC2 deficiency activates C-RAF/MKK3/p38 signalling pathway altering the cellular response to oxidative stress

    Get PDF
    HERC2 gene encodes an E3 ubiquitin ligase involved in several cellular processes by regulating the ubiquitylation of different protein substrates. Biallelic pathogenic sequence variants in the HERC2 gene are associated with HERC2 Angelman-like syndrome. In pathogenic HERC2 variants, complete absence or marked reduction in HERC2 protein levels are observed. The most common pathological variant, c.1781C > T (p.Pro594Leu), encodes an unstable HERC2 protein. A better understanding of how pathologic HERC2 variants affect intracellular signalling may aid definition of potential new therapies for these disorders. For this purpose, we studied patient-derived cells with the HERC2 Pro594Leu variant. We observed alteration of mitogen-activated protein kinase signalling pathways, reflected by increased levels of C-RAF protein and p38 phosphorylation. HERC2 knockdown experiments reproduced the same effects in other human and mouse cells. Moreover, we demonstrated that HERC2 and RAF proteins form molecular complexes, pull-down and proteomic experiments showed that HERC2 regulates C-RAF ubiquitylation and we found out that the p38 activation due to HERC2 depletion occurs in a RAF/MKK3-dependent manner. The displayed cellular response was that patient-derived and other human cells with HERC2 deficiency showed higher resistance to oxidative stress with an increase in the master regulator of the antioxidant response NRF2 and its target genes. This resistance was independent of p53 and abolished by RAF or p38 inhibitors. Altogether, these findings identify the activation of C-RAF/MKK3/p38 signalling pathway in HERC2 Angelman-like syndrome and highlight the inhibition of RAF activity as a potential therapeutic option for individuals affected with these rare diseases

    High carrier frequency of the GJB2 mutation (35delG) in the north of Iran

    Get PDF
    Objective: Mutations in the GJB2 gene are a major cause of autosomal recessive and sporadic non-syndromic hearing loss in many populations. A single mutation of this gene (35delG) accounts for approximately 70% of mutations in Caucasians with a carrier frequency of 2-4% in Europe. This study aims to determine the rate of 35delG carrier frequency in Iran. Methods: Genomic DNA was extracted from a total of 550 unaffected unrelated subjects from 4 provinces of Iran following the standard phenol chloroform procedure. The one base pair deletion (35delG) was analysed using a nested PCR procedure; 35delG mutation carriers were subsequently confirmed by sequence analysis. Moreover, using the Binomial probability distribution, we compared the 35delG carrier frequency of Iranian population with the various Middle Eastern and overall European populations. Results: Of the four populations studied, we found a high carrier frequency of 2.8% in Gilan province in the north of Iran. The overall 35delG carrier frequency was found to be 1.25% in the populations studied (our present and previous data) which is similar to the overall 35delG carrier frequency detected in Middle Eastern populations, but Significantly tower than that identified in European populations. (c) 2007 Elsevier Ireland Ltd. All rights reserved

    Notch-Deficient Skin Induces a Lethal Systemic B-Lymphoproliferative Disorder by Secreting TSLP, a Sentinel for Epidermal Integrity

    Get PDF
    Epidermal keratinocytes form a highly organized stratified epithelium and sustain a competent barrier function together with dermal and hematopoietic cells. The Notch signaling pathway is a critical regulator of epidermal integrity. Here, we show that keratinocyte-specific deletion of total Notch signaling triggered a severe systemic B-lymphoproliferative disorder, causing death. RBP-j is the DNA binding partner of Notch, but both RBP-j–dependent and independent Notch signaling were necessary for proper epidermal differentiation and lipid deposition. Loss of both pathways caused a persistent defect in skin differentiation/barrier formation. In response, high levels of thymic stromal lymphopoietin (TSLP) were released into systemic circulation by Notch-deficient keratinocytes that failed to differentiate, starting in utero. Exposure to high TSLP levels during neonatal hematopoiesis resulted in drastic expansion of peripheral pre- and immature B-lymphocytes, causing B-lymphoproliferative disorder associated with major organ infiltration and subsequent death, a previously unappreciated systemic effect of TSLP. These observations demonstrate that local skin perturbations can drive a lethal systemic disease and have important implications for a wide range of humoral and autoimmune diseases with skin manifestations

    A large Indian family with rearrangement of chromosome 4p16 and 3p26.3 and divergent clinical presentations

    Get PDF
    BACKGROUND: The deletion of the chromosome 4p16.3 Wolf-Hirschhorn syndrome critical region (WHSCR-2) typically results in a characteristic facial appearance, varying intellectual disability, stereotypies and prenatal onset of growth retardation, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of distal chromosome 3p (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance.METHODS AND RESULTS: We investigated a large Indian five-generation pedigree with ten affected family members in which chromosomal microarray and fluorescence in situ hybridization analyses disclosed a complex rearrangement involving chromosomal subregions 4p16.1 and 3p26.3 resulting in a 4p16.1 deletion and 3p26.3 microduplication in three individuals, and a 4p16.1 duplication and 3p26.3 microdeletion in seven individuals. A typical clinical presentation of WHS was observed in all three cases with 4p16.1 deletion and 3p26.3 microduplication. Individuals with a 4p16.1 duplication and 3p26.3 microdeletion demonstrated a range of clinical features including typical 3p microdeletion or 4p partial trisomy syndrome to more severe neurodevelopmental delay with distinct dysmorphic features.CONCLUSION: We present the largest pedigree with complex t(4p;3p) chromosomal rearrangements and diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome amongst affected individuals.<br/

    Randomised, double-blind, multicentre, mixed-methods, dose-escalation feasibility trial of mirtazapine for better treatment of severe breathlessness in advanced lung disease (BETTER-B feasibility)

    Get PDF
    © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ. New treatments are required for severe breathlessness in advanced disease. We conducted a randomised feasibility trial of mirtazapine over 28 days in adults with a modified medical research council breathlessness scale score ≥3. Sixty-four patients were randomised (409 screened), achieving our primary feasibility endpoint of recruitment. Most patients had COPD or interstitial lung disease; 52 (81%) completed the trial. There were no differences between placebo and mirtazapine in tolerability or safety, and blinding was maintained. Worst breathlessness ratings at day 28 (primary clinical activity endpoint) were, 7.1 (SD 2.3, placebo) and 6.3 (SD 1.8, mirtazapine). A phase III trial of mirtazapine is indicated. Trial registration: ISRCTN 32236160; European Clinical Trials Database (EudraCT no: 2015-004064-11)
    corecore