575 research outputs found

    Trying not to try: The paradox of intentionality in jazz improvisation and its implications for organizational scholarship

    Get PDF
    Organizational scholars have long been interested in how jazz musicians manage tensions between structure and freedom, plans and action, and familiarity and novelty. Although improvisation has been conceptualized as a way of managing such paradoxes, the process of improvisation itself contains paradoxes. In this essay, we return to jazz improvisation to identify a new paradox of interest to organizational scholars: the paradox of intentionality. To improvise creatively, jazz musicians report that they must “try not to try,” or risk undermining the very spontaneity that is prized in jazz. Jazz improvisers must therefore control their ability to relinquish deliberate control of their actions. To accomplish this, they engage in three interdependent practices. Jazz musicians intentionally surrender their sense of active control (“letting go”) while creating a passive externalized role for this sense of active control (using a “third ear”). Letting go allows new and unexpected ideas to emerge, while the metaphorical third ear can identify promising ideas or problematic execution and, in doing so, re-engage active agency (“grabbing hold”). Examining the practices within creative improvisation reveals the complexity of the lived experience of the paradox, which we argue suggests further integration among organizational research on improvisation, creativity, and paradox

    Investigation of the Verhaar scheme for predicting acute aquatic toxicity: improving predictions obtained from Toxtree ver. 2.6

    Get PDF
    Assessment of the potential of compounds to cause harm to the aquatic environment is an integral part 8 of the REACH legislation. To reduce the number of vertebrate and invertebrate animals required for 9 this analysis alternative approaches have been promoted. Category formation and read-across have 10 been applied widely to predict toxicity. A key approach to grouping for environmental toxicity is the 11 Verhaar scheme which uses rules to classify compounds into one of four mechanistic categories. 12 These categories provide a mechanistic basis for grouping and any further predictive modelling. A 13 computational implementation of the Verhaar scheme is available in Toxtree v2.6. The work 14 presented herein demonstrates how modifications to the implementation of Verhaar between version 15 1.5 and 2.6 of Toxtree have improved performance by reducing the number of incorrectly classified 16 compounds. However, for the datasets used in this analysis, version 2.6 classifies more compounds as 17 outside of the domain of the model. Further amendments to the classification rules have been 18 implemented here using a post-processing filter encoded as a KNIME workflow. This results in fewer 19 compounds being classified as outside of the model domain, further improving the predictivity of the 20 scheme. The utility of the modification described herein is demonstrated through building quality, 21 mechanism-specific Quantitative Structure Activity Relationship (QSAR) models for the compounds 22 within specific mechanistic categories

    Adverse Outcome Pathway (AOP) Informed Modeling of Aquatic Toxicology: QSARs, Read-Across, and Interspecies Verification of Modes of Action.

    Get PDF
    Alternative approaches have been promoted to reduce the number of vertebrate and invertebrate animals required for the assessment of the potential of compounds to cause harm to the aquatic environment. A key philosophy in the development of alternatives is a greater understanding of the relevant adverse outcome pathway (AOP). One alternative method is the fish embryo toxicity (FET) assay. Although the trends in potency have been shown to be equivalent in embryo and adult assays, a detailed mechanistic analysis of the toxicity data has yet to be performed; such analysis is vital for a full understanding of the AOP. The research presented herein used an updated implementation of the Verhaar scheme to categorize compounds into AOP-informed categories. These were then used in mechanistic (quantitative) structure-activity relationship ((Q)SAR) analysis to show that the descriptors governing the distinct mechanisms of acute fish toxicity are capable of modeling data from the FET assay. The results show that compounds do appear to exhibit the same mechanisms of toxicity across life stages. Thus, this mechanistic analysis supports the argument that the FET assay is a suitable alternative testing strategy for the specified mechanisms and that understanding the AOPs is useful for toxicity prediction across test systems

    Ensuring confidence in predictions: A scheme to assess the scientific validity of in silico models

    Get PDF
    The use of in silico tools within the drug development process to predict a wide range of properties including absorption, distribution, metabolism, elimination and toxicity has become increasingly important due to changes in legislation and both ethical and economic drivers to reduce animal testing. Whilst in silico tools have been used for decades there remains reluctance to accept predictions based on these methods particularly in regulatory settings. This apprehension arises in part due to lack of confidence in the reliability, robustness and applicability of the models. To address this issue we propose a scheme for the verification of in silico models that enables end users and modellers to assess the scientific validity of models in accordance with the principles of good computer modelling practice. We report here the implementation of the scheme within the Innovative Medicines Initiative project “eTOX” (electronic toxicity) and its application to the in silico models developed within the frame of this project

    Tankyrase Requires SAM Domain-Dependent Polymerization to Support Wnt-β-Catenin Signaling.

    Get PDF
    The poly(ADP-ribose) polymerase (PARP) Tankyrase (TNKS and TNKS2) is paramount to Wnt-β-catenin signaling and a promising therapeutic target in Wnt-dependent cancers. The pool of active β-catenin is normally limited by destruction complexes, whose assembly depends on the polymeric master scaffolding protein AXIN. Tankyrase, which poly(ADP-ribosyl)ates and thereby destabilizes AXIN, also can polymerize, but the relevance of these polymers has remained unclear. We report crystal structures of the polymerizing TNKS and TNKS2 sterile alpha motif (SAM) domains, revealing versatile head-to-tail interactions. Biochemical studies informed by these structures demonstrate that polymerization is required for Tankyrase to drive β-catenin-dependent transcription. We show that the polymeric state supports PARP activity and allows Tankyrase to effectively access destruction complexes through enabling avidity-dependent AXIN binding. This study provides an example for regulated signal transduction in non-membrane-enclosed compartments (signalosomes), and it points to novel potential strategies to inhibit Tankyrase function in oncogenic Wnt signaling

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    Effect of Biodiversity Changes in Disease Risk: Exploring Disease Emergence in a Plant-Virus System

    Get PDF
    The effect of biodiversity on the ability of parasites to infect their host and cause disease (i.e. disease risk) is a major question in pathology, which is central to understand the emergence of infectious diseases, and to develop strategies for their management. Two hypotheses, which can be considered as extremes of a continuum, relate biodiversity to disease risk: One states that biodiversity is positively correlated with disease risk (Amplification Effect), and the second predicts a negative correlation between biodiversity and disease risk (Dilution Effect). Which of them applies better to different host-parasite systems is still a source of debate, due to limited experimental or empirical data. This is especially the case for viral diseases of plants. To address this subject, we have monitored for three years the prevalence of several viruses, and virus-associated symptoms, in populations of wild pepper (chiltepin) under different levels of human management. For each population, we also measured the habitat species diversity, host plant genetic diversity and host plant density. Results indicate that disease and infection risk increased with the level of human management, which was associated with decreased species diversity and host genetic diversity, and with increased host plant density. Importantly, species diversity of the habitat was the primary predictor of disease risk for wild chiltepin populations. This changed in managed populations where host genetic diversity was the primary predictor. Host density was generally a poorer predictor of disease and infection risk. These results support the dilution effect hypothesis, and underline the relevance of different ecological factors in determining disease/infection risk in host plant populations under different levels of anthropic influence. These results are relevant for managing plant diseases and for establishing conservation policies for endangered plant species

    Higher-order multipole amplitudes in charmonium radiative transitions

    Full text link
    Using 24 million ψψ(2S)\psi' \equiv \psi(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions ψγχc1,2\psi' \to \gamma \chi_{c1,2} and χc1,2γJ/ψ\chi_{c1,2} \to \gamma J/\psi, in striking contrast to some previous measurements. Let b2Jb_2^J and a2Ja_2^J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript JJ refers to the angular momentum of the χcJ\chi_{cJ}. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we determine the ratios a2J=1/a2J=2=0.670.13+0.19a_2^{J=1}/a_2^{J=2} = 0.67^{+0.19}_{-0.13} and a2J=1/b2J=1=2.270.99+0.57a_2^{J=1}/b_2^{J=1} = -2.27^{+0.57}_{-0.99}, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676±0.071a_2^{J=1}/a_2^{J=2} = 0.676 \pm 0.071 and a2J=1/b2J=1=2.27±0.16a_2^{J=1}/b_2^{J=1} = -2.27 \pm 0.16.Comment: 32 pages, 7 figures, acceptance updat

    Detecting inertial effects with airborne matter-wave interferometry

    Get PDF
    Inertial sensors relying on atom interferometry offer a breakthrough advance in a variety of applications, such as inertial navigation, gravimetry or ground- and space-based tests of fundamental physics. These instruments require a quiet environment to reach their performance and using them outside the laboratory remains a challenge. Here we report the first operation of an airborne matter-wave accelerometer set up aboard a 0g plane and operating during the standard gravity (1g) and microgravity (0g) phases of the flight. At 1g, the sensor can detect inertial effects more than 300 times weaker than the typical acceleration fluctuations of the aircraft. We describe the improvement of the interferometer sensitivity in 0g, which reaches 2 x 10-4 ms-2 / \surdHz with our current setup. We finally discuss the extension of our method to airborne and spaceborne tests of the Universality of free fall with matter waves.Comment: 7 pages, 6 figures. The final version of this article is available in OPEN access (free) from the editor website at http://www.nature.com/ncomms/journal/v2/n9/full/ncomms1479.htm

    Does the availability of positron emission tomography modify diagnostic strategies for solitary pulmonary nodules? An observational study in France

    Get PDF
    International audienceBACKGROUND: Previous studies showed that at the individual level, positron emission tomography (PET) has some benefits for patients and physicians in terms of cancer management and staging. We aimed to describe the benefits of (PET) in the management of solitary pulmonary nodules (SPNs) in a population level, in terms of the number of diagnostic and invasive tests performed, time to diagnosis and factors determining PET utilization. METHODS: In an observational study, we examined reports of computed tomography (CT) performed and mentioning "spherical lesion", "nodule" or synonymous terms. We found 11,515 reports in a before-PET period, 2002-2003, and 20,075 in an after-PET period, 2004-2005. Patients were followed through their physician, who was responsible for diagnostic management. RESULTS: We had complete data for 112 patients (73.7%) with new cases of SPN in the before-PET period and 250 (81.4%) in the after-PET period. Patients did not differ in mean age (64.9 vs. 64.8 years). The before-PET patients underwent a mean of 4 tests as compared with 3 tests for the after-PET patients (p = 0.08). Patients in the before-PET period had to wait 41.4 days, on average, before receiving a diagnosis as compared with 24.0 days, on average, for patients in the after-PET period who did not undergo PET (p < 0.001). In the after-PET period, 11% of patients underwent PET during the diagnostic process. A spiculated nodule was more likely to determine prescription for PET (p < 0.001). Multivariate analysis revealed that patients in both periods underwent fewer tests when PET was prescribed by general practitioners (p < 0.001) and if the nodule was not spiculated (p < 0.001). The proportion of unnecessary invasive approaches prescribed (47% vs. 49%) did not differ between the groups. CONCLUSION: In our study, 1 year after the availability of PET, the technology was not the first choice for diagnostic management of SPN. Even though we observed a tendency for reduced number of tests and mean time to diagnosis with PET, these phenomena did not fully relate to PET availability in health communities. In addition, the availability of PET in the management of SPN diagnosis did not reduce the overall rate of unnecessary invasive approaches
    corecore