106 research outputs found

    Mammalian epoxide hydrolases in xenobiotic metabolism and signalling

    Get PDF
    Epoxide hydrolases catalyse the hydrolysis of electrophilic—and therefore potentially genotoxic—epoxides to the corresponding less reactive vicinal diols, which explains the classification of epoxide hydrolases as typical detoxifying enzymes. The best example is mammalian microsomal epoxide hydrolase (mEH)—an enzyme prone to detoxification—due to a high expression level in the liver, a broad substrate selectivity, as well as inducibility by foreign compounds. The mEH is capable of inactivating a large number of structurally different, highly reactive epoxides and hence is an important part of the enzymatic defence of our organism against adverse effects of foreign compounds. Furthermore, evidence is accumulating that mammalian epoxide hydrolases play physiological roles other than detoxification, particularly through involvement in signalling processes. This certainly holds true for soluble epoxide hydrolase (sEH) whose main function seems to be the turnover of lipid derived epoxides, which are signalling lipids with diverse functions in regulatory processes, such as control of blood pressure, inflammatory processes, cell proliferation and nociception. In recent years, the sEH has attracted attention as a promising target for pharmacological inhibition to treat hypertension and possibly other diseases. Recently, new hitherto uncharacterised epoxide hydrolases could be identified in mammals by genome analysis. The expression pattern and substrate selectivity of these new epoxide hydrolases suggests their participation in signalling processes rather than a role in detoxification. Taken together, epoxide hydrolases (1) play a central role in the detoxification of genotoxic epoxides and (2) have an important function in the regulation of physiological processes by the control of signalling molecules with an epoxide structur

    Impact of oral rehabilitation on the quality of life of partially dentate elders in a randomised controlled clinical trial: 2 year follow-up

    Get PDF
    <div><p>Objective</p><p>This randomised clinical trial aimed to compare the impact of two different tooth replacement strategies for partially dentate older patients namely; removable partial dentures (RPDs) and functionally orientated treatment based on the shortened dental arch (SDA) concept, on Oral Health-related Quality of Life (OHrQOL).</p><p>Methods</p><p>89 patients completed a randomised clinical trial. Patients were recruited in two centres: Cork University Dental Hospital (CUDH) and a Geriatric Day Hospital (SFDH). 44 patients were randomly allocated to the RPD group and 45 to the SDA group where adhesive bridgework was used to provide 10 pairs of occluding contacts. The impact of treatment on OHrQOL was used as the primary outcome measure. Each patient completed the Oral Health Impact Profile (OHIP-14) at baseline, 1, 6, 12 and 24 months after treatment.</p><p>Results</p><p>Both treatment groups reported improvements in OHIP-14 scores at 24 months (p<0.05). For the SDA group OHIP-14 scores improved by 8.0 scale points at 12 months (p<0.001) and 5.9 scale points at 24 months (p<0.05). For the RPD group OHIP-14 scores improved by 5.7 scale points at 12 months (p<0.05) and 4.2 scale points at 24 months (p<0.05). Analysis using ANCOVA showed that there were significant between group differences recorded in both treatment centres. 24 months after intervention the SDA group recorded better OHIP-14 scores by an average of 2.9 points in CUDH (p<0.0001) and by an average of 7.9 points in SFDH (p<0.0001) compared to the RPD group.</p><p>Conclusions</p><p>Patients in the SDA group maintained their improvements in OHrQOL scores throughout the 24 month study period. For the RPD group the initial improvement in OHrQOL score began to diminish after 6 months, particularly for those treated in SFDH. Thus, the benefits of functionally orientated treatment increased over time, particularly for the older, more systemically unwell cohort in SFDH.</p></div

    The importance of communication and involvementin decision-making: A study in Ireland exploring birthsatisfaction using the Birth Satisfaction Scale-Revised (BSS-R)

    Get PDF
    Introduction:Evaluation in healthcare services has become a priority, globally1. The Government of Ireland has highlighted the importance of stakeholder engagement to identify the needs of women in the design and delivery of high-quality health services, driven by necessity rather than financial ability2. The Birth Satisfaction Scale-Revised (BSS-R), an internationally validated tool, and recommended for measuring childbirth satisfaction by the International Consortium for Health Outcomes Measurement (ICHOM)3; however, it has yet to be considered in the Irish context. The aim of the study was to explore birth satisfaction with a sample of new mothers in Ireland.Methods:A mixed-methods study was conducted including a survey that involved collection of data from the BSS-R 10-item questionnaire from 307 mothers over an 8-week period in 2019, in one urban maternity hospital in Ireland. Quantitative and qualitative data were collected. Qualitative data from the free-text comments of the survey questions were analyzed using content analysis.Results:Overall, women reported positive relationships with their care providers and were satisfied with the communication and support they received, as well as high levels of control and choice. Postnatal care, however, was highlighted as being less satisfactory with staffing levels described as inadequate.Conclusions:Understanding women’s birth experiences and what is important to them could facilitate midwives and other health professionals to improve the quality of their care and develop guidelines and policies that focus on women and their families’ needs. The vast majority of women rated their birthing experience as extremely positive. The main elements of care that contributed to a positive birthing experience for women were quality relationships with clinicians, choice and control, and emotional safety

    Investigation of the use of a sensor bracelet for the presymptomatic detection of changes in physiological parameters related to COVID-19: an interim analysis of a prospective cohort study (COVI-GAPP).

    Get PDF
    OBJECTIVES We investigated machinelearningbased identification of presymptomatic COVID-19 and detection of infection-related changes in physiology using a wearable device. DESIGN Interim analysis of a prospective cohort study. SETTING, PARTICIPANTS AND INTERVENTIONS Participants from a national cohort study in Liechtenstein were included. Nightly they wore the Ava-bracelet that measured respiratory rate (RR), heart rate (HR), HR variability (HRV), wrist-skin temperature (WST) and skin perfusion. SARS-CoV-2 infection was diagnosed by molecular and/or serological assays. RESULTS A total of 1.5 million hours of physiological data were recorded from 1163 participants (mean age 44±5.5 years). COVID-19 was confirmed in 127 participants of which, 66 (52%) had worn their device from baseline to symptom onset (SO) and were included in this analysis. Multi-level modelling revealed significant changes in five (RR, HR, HRV, HRV ratio and WST) device-measured physiological parameters during the incubation, presymptomatic, symptomatic and recovery periods of COVID-19 compared with baseline. The training set represented an 8-day long instance extracted from day 10 to day 2 before SO. The training set consisted of 40 days measurements from 66 participants. Based on a random split, the test set included 30% of participants and 70% were selected for the training set. The developed long short-term memory (LSTM) based recurrent neural network (RNN) algorithm had a recall (sensitivity) of 0.73 in the training set and 0.68 in the testing set when detecting COVID-19 up to 2 days prior to SO. CONCLUSION Wearable sensor technology can enable COVID-19 detection during the presymptomatic period. Our proposed RNN algorithm identified 68% of COVID-19 positive participants 2 days prior to SO and will be further trained and validated in a randomised, single-blinded, two-period, two-sequence crossover trial. Trial registration number ISRCTN51255782; Pre-results

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Rif1 maintains telomeres and mediates DNA repair by encasing DNA ends

    Get PDF
    In yeast, Rif1 is part of the telosome, where it inhibits telomerase and checkpoint signaling at chromosome ends. In mammalian cells, Rif1 is not telomeric, but it suppresses DNA end resection at chromosomal breaks, promoting repair by nonhomologous end joining (NHEJ). Here, we describe crystal structures for the uncharacterized and conserved ∌125-kDa N-terminal domain of Rif1 from Saccharomyces cerevisiae (Rif1-NTD), revealing an α-helical fold shaped like a shepherd's crook. We identify a high-affinity DNA-binding site in the Rif1-NTD that fully encases DNA as a head-to-tail dimer. Engagement of the Rif1-NTD with telomeres proved essential for checkpoint control and telomere length regulation. Unexpectedly, Rif1-NTD also promoted NHEJ at DNA breaks in yeast, revealing a conserved role of Rif1 in DNA repair. We propose that tight associations between the Rif1-NTD and DNA gate access of processing factors to DNA ends, enabling Rif1 to mediate diverse telomere maintenance and DNA repair functions

    Sex-specific differences in physiological parameters related to SARS-CoV-2 infections among a national cohort (COVI-GAPP study)

    Get PDF
    Considering sex as a biological variable in modern digital health solutions, we investigated sex-specific differences in the trajectory of four physiological parameters across a COVID-19 infection. A wearable medical device measured breathing rate, heart rate, heart rate variability, and wrist skin temperature in 1163 participants (mean age = 44.1 years, standard deviation [SD] = 5.6; 667 [57%] females). Participants reported daily symptoms and con-founders in a complementary app. A machine learning algorithm retrospectively ingested daily biophysical parameters to detect COVID-19 infections. COVID-19 serology samples were collected from all participants at baseline and follow-up. We analysed potential sex-specific differences in physiology and antibody titres using multilevel modelling and t-tests. Over 1.5 million hours of physiological data were recorded. During the symptomatic period of infection, men demonstrated larger increases in skin temperature, breathing rate, and heart rate as well as larger decreases in heart rate variability than women. The COVID-19 infection detection algorithm performed similarly well for men and women. Our study belongs to the first research to provide evidence for differential physiological responses to COVID-19 between females and males, highlighting the potential of wearable technology to inform future precision medicine approaches
    • 

    corecore