298 research outputs found

    Biomarkers and in vitro strategies for nephrotoxicity and renal disease assessment

    Get PDF
    Acute kidney injury (AKI) is a global public health concern, impacting nearly 13.3 million patients and resulting in three million deaths per year. Chronic kidney disease has increased by 135% since 1990, representing the pathology with the fastest growth rate worldwide. The annual costs of dialysis and kidney transplants range between US35,000andUS35,000 and US100,000 per patient. Despite its great impact, kidney disease has remained mostly asymptomatic for many years. AKI continues to be a major, unmet medical condition for which there are no pharmacological treatments available, while animal models are limited to provide direction for therapeutic translation into humans. Currently, serum creatinine is the standard biomarker to identify nephrotoxicity; however, it is a late stage biomarker. Hence, there is a pressing need to study in vitro biomarkers for the assessment of nephrotoxicity in order to develop new and safer drugs. Understanding of the mechanisms by which molecules produce nephrotoxicity is vital in order to both prevent adversity and treat kidney injury. In this review, we address new technologies and models that may be used to identify earlier biomarkers and pathways involved in nephrotoxicity, such as cell culture, omics, bioinformatics platform, CRISPR/Cas9 genome-editing, in silico, organoids and 3D bioprinting, considering AOP

    Potential of ToxCast data in the safety assessment of food chemicals

    Get PDF
    Tox21 and ToxCast are high-throughput in vitro screening (HTS) programmes coordinated by the U.S. National Toxicology Program and the U.S. Environmental Protection Agency, respectively, with the goal of forecasting biological effects in vivo based on bioactivity profiling. The present study investigated whether mechanistic insights in the biological targets of food-relevant chemicals can be obtained from ToxCast results, when the chemicals are grouped according to structural similarity. Starting from the 556 direct additives that have been identified in the ToxCast database by Karmaus et al. (2017), the results showed that, despite the limited number of assays in which the chemical groups have been tested, sufficient results are available within so-called “DNA binding” and “nuclear receptor” target families to profile the biological activities of the defined chemical groups for these targets. The most obvious activity identified was the estrogen receptor (ER)-mediated actions of the chemical group containing parabens and structurally related gallates, as well the chemical group containing genistein and daidzein (the latter particularly towards ERÎČ as potential health beneficial target). These group effects, as well as the biological activities of other chemical groups, was evaluated in a series of case studies. Overall, the results of the present study suggest HTS data could add to the evidence considered for regulatory risk assessments for food chemicals and to the evaluation of desirable effects of nutrients and phytonutrients. The data will be particularly useful for providing mechanistic information and to fill data gaps with read-across

    Sigma-1 receptors control neuropathic pain and macrophage infiltration into the dorsal root ganglion after peripheral nerve injury

    Get PDF
    Neuron-immune interaction in the dorsal root ganglia (DRG) plays a pivotal role in the neuropathic pain development after nerve injury. Sigma-1 receptor (Sig-1R) is expressed by DRG neurons but its role in neuropathic pain is not fully understood. We investigated the effect of peripheral Sig-1R on neuroinflammation in the DRG after spared (sciatic) nerve injury (SNI) in mice. Nerve injury induced a decrease in NeuN staining along with the nuclear eccentricity and ATF3 expression in the injured DRG. Sig-1R was present in all DRG neurons examined, and after SNI this receptor translocated to the periphery of the soma and the vicinity of the nucleus, especially in injured ATF3 + neurons. In WT mice, injured DRG produced the chemokine CCL2, and this was followed by massive infiltration of macrophages/monocytes, which clustered mainly around sensory neurons with translocated Sig-1R, accompanied by robust IL-6 increase and mechanical allodynia. In contrast, Sig-1R knockout (Sig-1R-KO) mice showed reduced levels of CCL2, decreased macrophage/monocyte infiltration into DRG, and less IL-6 and neuropathic mechanical allodynia after SNI. Our findings point to an important role of peripheral Sig-1R in sensory neuron-macrophage/monocyte communication in the DRG after peripheral nerve injury; thus, these receptors may contribute to the neuropathic pain phenotypeNeurofarmacologĂ­a del dolor de la Universidad de Granada (CTS-109)FPU grants from the Spanish Ministry of Education, Culture and Sports.Spanish Ministry of Economy and Competitiveness (MINECO, grant SAF2016-80540-R)the Junta de AndalucĂ­a (grant CTS 109)Esteve PharmaceuticalsEuropean Regional Development Fund (ERDF

    Ultraviolet polarisation sensitivity in the stomatopod crustacean Odontodactylus scyllarus

    Get PDF
    The ommatidia of crustacean eyes typically contain two classes of photoreceptors with orthogonally oriented microvilli. These receptors provide the basis for two-channel polarisation vision in the blue–green spectrum. The retinae of gonodactyloid stomatopod crustaceans possess a great variety of structural specialisations for elaborate polarisation vision. One type of specialisation is found in the small, distally placed R8 cells within the two most ventral rows of the mid-band. These ultraviolet-sensitive photoreceptors produce parallel microvilli, a feature suggestive for polarisation-sensitive photoreceptors. Here, we show by means of intracellular recordings combined with dye-injections that in the gonodactyloid species Odontodactylus scyllarus, the R8 cells of mid-band rows 5 and 6 are sensitive to linear polarised ultraviolet light. We show that mid-band row 5 R8 cells respond maximally to light with an e-vector oriented parallel to the mid-band, whereas mid-band row 6 R8 cells respond maximally to light with an e-vector oriented perpendicular to the mid-band. This orthogonal arrangement of ultraviolet-sensitive receptor cells could support ultraviolet polarisation vision. R8 cells of rows 5 and 6 are known to act as quarter-wave retarders around 500 nm and thus are the first photoreceptor type described with a potential dual role in polarisation vision

    Ocean temperature and salinity components of the Madden-Julian oscillation observed by Argo floats

    Get PDF
    New diagnostics of the Madden-Julian Oscillation (MJO) cycle in ocean temperature and, for the first time, salinity are presented. The MJO composites are based on 4 years of gridded Argo float data from 2003 to 2006, and extend from the surface to 1,400 m depth in the tropical Indian and Pacific Oceans. The MJO surface salinity anomalies are consistent with precipitation minus evaporation fluxes in the Indian Ocean, and with anomalous zonal advection in the Pacific. The Argo sea surface temperature and thermocline depth anomalies are consistent with previous studies using other data sets. The near-surface density changes due to salinity are comparable to, and partially offset, those due to temperature, emphasising the importance of including salinity as well as temperature changes in mixed-layer modelling of tropical intraseasonal processes. The MJO-forced equatorial Kelvin wave that propagates along the thermocline in the Pacific extends down into the deep ocean, to at least 1,400 m. Coherent, statistically significant, MJO temperature and salinity anomalies are also present in the deep Indian Ocean

    Inter-hemispheric EEG coherence analysis in Parkinson's disease : Assessing brain activity during emotion processing

    Get PDF
    Parkinson’s disease (PD) is not only characterized by its prominent motor symptoms but also associated with disturbances in cognitive and emotional functioning. The objective of the present study was to investigate the influence of emotion processing on inter-hemispheric electroencephalography (EEG) coherence in PD. Multimodal emotional stimuli (happiness, sadness, fear, anger, surprise, and disgust) were presented to 20 PD patients and 30 age-, education level-, and gender-matched healthy controls (HC) while EEG was recorded. Inter-hemispheric coherence was computed from seven homologous EEG electrode pairs (AF3–AF4, F7–F8, F3–F4, FC5–FC6, T7–T8, P7–P8, and O1–O2) for delta, theta, alpha, beta, and gamma frequency bands. In addition, subjective ratings were obtained for a representative of emotional stimuli. Interhemispherically, PD patients showed significantly lower coherence in theta, alpha, beta, and gamma frequency bands than HC during emotion processing. No significant changes were found in the delta frequency band coherence. We also found that PD patients were more impaired in recognizing negative emotions (sadness, fear, anger, and disgust) than relatively positive emotions (happiness and surprise). Behaviorally, PD patients did not show impairment in emotion recognition as measured by subjective ratings. These findings suggest that PD patients may have an impairment of inter-hemispheric functional connectivity (i.e., a decline in cortical connectivity) during emotion processing. This study may increase the awareness of EEG emotional response studies in clinical practice to uncover potential neurophysiologic abnormalities

    Behavioral responses to injury and death in wild Barbary macaques (Macaca sylvanus)

    Get PDF
    The wounding or death of a conspecific has been shown to elicit varied behavioral responses throughout thanatology. Recently, a number of reports have presented contentious evidence of epimeletic behavior towards the dying and dead among non-human animals, a behavioral trait previously considered uniquely human. Here, we report on the behavioral responses of Barbary macaques, a social, non-human primate, to the deaths of four group members (one high-ranking adult female, one high-ranking adult male, one juvenile male, and one female infant), all caused by road traffic accidents. Responses appeared to vary based on the nature of the death (protracted or instant) and the age class of the deceased. Responses included several behaviors with potential adaptive explanations or consequences. These included exploration, caretaking (guarding, carrying, and grooming), and proximity to wounded individuals or corpses, and immediate as well as longer-lasting distress behaviors from other group members following death, all of which have been reported in other non-human primate species. These observations add to a growing body of comparative evolutionary analysis of primate thanatology and help to highlight the multifaceted impacts of human-induced fatalities on an endangered and socially complex primate. © 2016, Japan Monkey Centre and Springer Japan

    Clinical relevance of ErbB-2/HER2 nuclear expression in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The biological relevance of nuclear ErbB-2/HER2 (NuclErbB-2) presence in breast tumors remains unexplored. In this study we assessed the clinical significance of ErbB-2 nuclear localization in primary invasive breast cancer. The reporting recommendations for tumor marker prognostic studies (REMARK) guidelines were used as reference.</p> <p>Methods</p> <p>Tissue microarrays from a cohort of 273 primary invasive breast carcinomas from women living in Chile, a Latin American country, were examined for membrane (MembErbB-2) and NuclErbB-2 expression by an immunofluorescence (IF) protocol we developed. ErbB-2 expression was also evaluated by immunohistochemistry (IHC) with a series of antibodies. Correlation between NuclErbB-2 and MembErbB-2, and between NuclErbB-2 and clinicopathological characteristics of tumors was studied. The prognostic value of NuclErbB-2 in overall survival (OS) was evaluated using Kaplan-Meier method, and Cox model was used to explore NuclErbB-2 as independent prognostic factor for OS.</p> <p>Results</p> <p>The IF protocol we developed showed significantly higher sensitivity for detection of NuclErbB-2 than IHC procedures, while its specificity and sensitivity to detect MembErbB-2 were comparable to those of IHC procedures. We found 33.6% NuclErbB-2 positivity, 14.2% MembErbB-2 overexpression by IF, and 13.0% MembErbB-2 prevalence by IHC in our cohort. We identified NuclErbB-2 positivity as a significant independent predictor of worse OS in patients with MembErbB-2 overexpression. NuclErbB-2 was also a biomarker of lower OS in tumors that overexpress MembErbB-2 and lack steroid hormone receptors.</p> <p>Conclusions</p> <p>We revealed a novel role for NuclErbB-2 as an independent prognostic factor of poor clinical outcome in MembErbB-2-positive breast tumors. Our work indicates that patients presenting NuclErbB-2 may need new therapeutic strategies involving specific blockage of ErbB-2 nuclear migration.</p

    Stacking-Dependent Band Gap and Quantum Transport in Trilayer Graphene

    Get PDF
    In a multi-layer electronic system, stacking order provides a rarely-explored degree of freedom for tuning its electronic properties. Here we demonstrate the dramatically different transport properties in trilayer graphene (TLG) with different stacking orders. At the Dirac point, ABA-stacked TLG remains metallic while the ABC counterpart becomes insulating. The latter exhibits a gap-like dI/dV characteristics at low temperature and thermally activated conduction at higher temperatures, indicating an intrinsic gap ~6 meV. In magnetic fields, in addition to an insulating state at filling factor {\nu}=0, ABC TLG exhibits quantum Hall plateaus at {\nu}=-30, \pm 18, \pm 9, each of which splits into 3 branches at higher fields. Such splittings are signatures of the Lifshitz transition induced by trigonal warping, found only in ABC TLG, and in semi-quantitative agreement with theory. Our results underscore the rich interaction-induced phenomena in trilayer graphene with different stacking orders, and its potential towards electronic applications.Comment: minor revision; published versio

    Light in the Polar Night

    Get PDF
    How much light isa vailable for biological processes during Polar Night? This question appears simple enough. But the reality is that conventional light sen- sors for measuring visible light (~350 to ~700 nm) have not been sensitive enough to answer it. Beyond this technical challenge, “light” is a general term that must be qualified in terms of “light climate” before it has meaning for biological systems. In this chapter, we provide an answer to the question posed above and explore aspects of light climate during Polar Night with relevance to biology, specifically, how Polar Night is defined by solar elevation, atmospheric light in Polar Night and its propaga- tion underwater, bioluminescence in Polar Night and the concept of Polar Night as a deep-sea analogue, light pollution, and future perspectives. This chapter focuses on the quantity and quality of light present during Polar Night, while subsequent chapters in this volume focus on specific biological effects of this light for algae (Chap. “Marine Micro- and Macroalgae in the Polar Night”), zooplankton (Chaps.“Zooplankton in the Polar Night” and “Biological Clocks and Rhythms in Polar Organisms”), and fish (Chap. “Fish Ecology in the Polar Night”)
    • 

    corecore