1,201 research outputs found

    Morphology Effectively Controls Singlet-Triplet Exciton Relaxation and Charge Transport in Organic Semiconductors

    Full text link
    We present a comparative study of ultrafast photo-conversion dynamics in tetracene (Tc) and pentacene (Pc) single crystals and Pc films using optical pump-probe spectroscopy. Photo-induced absorption in Tc and Pc crystals is activated and temperature-independent respectively, demonstrating dominant singlet-triplet exciton fission. In Pc films (as well as C60_{60}-doped films) this decay channel is suppressed by electron trapping. These results demonstrate the central role of crystallinity and purity in photogeneration processes and will constrain the design of future photovoltaic devices.Comment:

    Multiplexed immunosensors for point-of-care diagnostic applications

    Get PDF
    Accurate, reliable, and cost-effective immunosensors are clinically important for the early diagnosis and monitoring of progressive diseases, and multiplexed sensing is a promising strategy for the next generation of diagnostics. This strategy allows for the simultaneous detection and quantification of multiple biomarkers with significantly enhanced reproducibility and reliability, whilst requiring smaller sample volumes, fewer materials, and shorter average analysis time for individual biomarkers than individual tests. In this opinionated review, we compare different techniques for the development of multiplexed immunosensors. We review the state-of-the-art approaches in the field of multiplexed immunosensors using electrical, electrochemical, and optical methods. The barriers that prevent translating this sensing strategy into clinics are outlined together with the potential solutions. We also share our vision on how multiplexed immunosensors will continue their evolution in the coming years

    Incorporating Concepts of Nanotechnology into the Materials Science and Engineering Classroom and Laboratory

    Get PDF
    The National Science Foundation-supported Materials Research Science and Engineering Center (MRSEC) on Nanostructured Materials and Interfaces at the University of Wisconsin – Madison has an extensive and highly successful education and outreach effort. One theme of this effort is the development of instructional materials based on cutting-edge research in nanoscale science and engineering. Nanotechnology examples, such as light emitting diodes (LEDs), shape memory alloys, amorphous metals, and ferrofluids, illustrate interdisciplinary research that provides connections among materials science, chemistry, physics, and engineering. They also highlight the tools of nanotechnology, such as scanning probe microscopy, electron microscopy, self-assembly, x-ray diffraction, and chemical vapor deposition, associated with the preparation and characterization of nanostructured materials. These and other nanotechnology concepts are illustrated with video demonstrations in a web-based resource called the Nanoworld Cineplex, which contains movies of experiments and demonstrations that can be brought into the classroom. Numerous experiments are also available in the Nanotechnology Lab Manual, which can be used as either a virtual laboratory or as a web-based video lab manual. These resources for using nanotechnology to teach fundamental materials science and engineering principles are available at

    The velocity peaks in the cold dark matter spectrum on Earth

    Full text link
    The cold dark matter spectrum on earth is expected to have peaks in velocity space. We obtain estimates for the sizes and locations of these peaks. To this end we have generalized the secondary infall model of galactic halo formation to include angular momentum of the dark matter particles. This new model is still spherically symmetric and it has self-similar solutions. Our results are relevant to direct dark matter search experiments.Comment: 12 pages including 1 table and 4 figures, LaTeX, REVTEX 3.0 versio

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    A quantum magnetic analogue to the critical point of water

    Full text link
    At the familiar liquid-gas phase transition in water, the density jumps discontinuously at atmospheric pressure, but the line of these first-order transitions defined by increasing pressures terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, a critical point was predicted and measured terminating the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge density. In quantum spin systems, continuous quantum phase transitions (QPTs) have been investigated extensively, but discontinuous QPTs have received less attention. The frustrated quantum antiferromagnet SrCu2_2(BO3_3)2_2 constitutes a near-exact realization of the paradigmatic Shastry-Sutherland model and displays exotic phenomena including magnetization plateaux, anomalous thermodynamics and discontinuous QPTs. We demonstrate by high-precision specific-heat measurements under pressure and applied magnetic field that, like water, the pressure-temperature phase diagram of SrCu2_2(BO3_3)2_2 has an Ising critical point terminating a first-order transition line, which separates phases with different densities of magnetic particles (triplets). We achieve a quantitative explanation of our data by detailed numerical calculations using newly-developed finite-temperature tensor-network methods. These results open a new dimension in understanding the thermodynamics of quantum magnetic materials, where the anisotropic spin interactions producing topological properties for spintronic applications drive an increasing focus on first-order QPTs.Comment: 8+4 pages, 4+3 figure

    Device Optimization of Tris-Aluminum (Alq3) Based Bilayer Organic Light Emitting Diode Structures

    Get PDF
    In this work we present detailed analysis of the emitted radiation spectrum from tris(8-hydroxyquinoline) aluminum (Alq3) based bilayer OLEDs as a function of: the choice of cathode, the thickness of organic layers, and the position of the hole transport layer/Alq3 interface. The calculations fully take into account dispersion in the glass substrate, the indium tin oxide anode, and in the organic layers, as well as the dispersion in the metal cathode. Influence of the incoherent transparent substrate (1 mm glass substrate) is also fully accounted for. Four cathode structures have been considered: Mg/Ag, Ca/Ag, LiF/Al, and Ag. For the hole transport layer, N,N'-diphenyl-N,N'-(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD) and N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) were considered. As expected, emitted radiation is strongly dependent on the position of the emissive layer inside the cavity and its distance from the metal cathode. Although our optical model for an OLED does not explicitly include exciton quenching in vicinity of the metal cathode, designs placing the emissive layer near the cathode are excluded to avoid unrealistic results. Guidelines for designing devices with optimum emission efficiency are presented. Finally, several different devices were fabricated and characterized and experimental and calculated emission spectra were compared

    Influence of family and friend smoking on intentions to smoke and smoking-related attitudes and refusal self-efficacy among 9-10 year old children from deprived neighbourhoods: a cross-sectional study.

    Get PDF
    BACKGROUND: Smoking often starts in early adolescence and addiction can occur rapidly. For effective smoking prevention there is a need to identify at risk groups of preadolescent children and whether gender-specific intervention components are necessary. This study aimed to examine associations between mother, father, sibling and friend smoking and cognitive vulnerability to smoking among preadolescent children living in deprived neighbourhoods. METHODS: Cross-sectional data was collected from 9-10 year old children (n =1143; 50.7% girls; 85.6% White British) from 43 primary schools in Merseyside, England. Children completed a questionnaire that assessed their smoking-related behaviour, intentions, attitudes, and refusal self-efficacy, as well as parent, sibling and friend smoking. Data for boys and girls were analysed separately using multilevel linear and logistic regression models, adjusting for individual cognitions and school and deprivation level. RESULTS: Compared to girls, boys had lower non-smoking intentions (P = 0.02), refusal self-efficacy (P = 0.04) and were less likely to agree that smoking is 'definitely' bad for health (P < 0.01). Friend smoking was negatively associated with non-smoking intentions in girls (P < 0.01) and boys (P < 0.01), and with refusal self-efficacy in girls (P < 0.01). Sibling smoking was negatively associated with non-smoking intentions in girls (P < 0.01) but a positive association was found in boys (P = 0.02). Boys who had a smoking friend were less likely to 'definitely' believe that the smoke from other people's cigarettes is harmful (OR 0.57, 95% CI: 0.35 to 0.91, P = 0.02). Further, boys with a smoking friend (OR 0.38, 95% CI: 0.21 to 0.69, P < 0.01) or a smoking sibling (OR 0.45, 95% CI: 0.21 to 0.98) were less likely to 'definitely' believe that smoking is bad for health. CONCLUSION: This study indicates that sibling and friend smoking may represent important influences on 9-10 year old children's cognitive vulnerability toward smoking. Whilst some differential findings by gender were observed, these may not be sufficient to warrant separate prevention interventions. However, further research is needed
    • …
    corecore