71 research outputs found
An international survey of patients with thalassemia major and their views about sustaining life-long desferrioxamine use
BACKGROUND: Management of thalassemia major requires patients to have life-long access to a treatment regimen of regular blood transfusions coupled with iron chelation therapy. The objective of this study was to investigate patients' reasons for missing iron chelation therapy with desferrioxamine, and the support to sustain life-long adherence to treatment. METHODS: From October 1999 to May 2000 a survey of patients with thalassemia major was conducted in ten countries: Cyprus, Egypt, Greece, Hong Kong, India, Iran, Italy, Jordan, Taiwan, and the United States. RESULTS: 1,888 questionnaires (65%) were returned. Most patients (1,573) used desferrioxamine, and 79% administered a dose at least 4 days a week. Inaccessibility of the drug was a common reason for missing a dose in India (51%), and in Iran (25%), whereas, in any other country, it was a reason for less than 17% of patients. Overall, 58% reported reasons for missing a dose related to their beliefs or feelings about the medication, and 42% drug-related side effects. CONCLUSION: Many patients miss doses of desferrioxamine and an opportunity remains to develop interventions that provide more support to sustain use of desferrioxamine
Recommended from our members
The benefits of fertiliser application on tree growth are transient in restored jarrah forest
The application of fertiliser, to both replace nutrients lost during mining and facilitate rapid vegetation re-establishment, is viewed as a key step in the restoration of post-mining landscapes. However, few studies have examined the long-term effects of a single initial fertiliser application on tree growth in restored sites. We report on a large-scale, fully replicated study that investigated the effect of an initial N and P fertiliser application (0, 80 and 120 kg ha−1 elemental N and P) on sites restored after bauxite mining. Growth of the two main jarrah forest tree species (jarrah - Eucalyptus marginata and marri - Corymbia calophylla) was monitored 9 and 20 years after the completion of restoration. After 20 years, soil NO3− and NH4+ were unaffected by N-application, although soil Colwell-P concentrations remained elevated following P-application. N-application had no effect on marri growth at either time interval, but increased jarrah diameter at breast height over bark (DBHOB), height and stand basal area at 9 years and DBHOB at 20 years. Applied-P increased height and DBHOB of jarrah after 9 years, but these effects did not continue. In contrast, applied-P benefitted marri growth (DBHOB and stand basal area) at both 9 and 20 years. Tree growth rates in the fertilised treatments declined more between the two-time intervals (0 – 9 years and 9 – 20 years) than the unfertilised plots, particularly for jarrah, suggesting that resource limits were reached more rapidly in the fertilised treatments. Further, for both N and P there was no additional benefit from application rates above 80 kg ha−1. These results demonstrate that while fertiliser addition may benefit initial growth in restored jarrah forest, the effects reduce with restoration age and may have limited practical benefit after 20 years
Comparative genomics of prevaccination and modern Bordetella pertussis strains
Contains fulltext :
89571.pdf (publisher's version ) (Open Access)BACKGROUND: Despite vaccination since the 1950s, pertussis has persisted and resurged. It remains a major cause of infant death worldwide and is the most prevalent vaccine-preventable disease in developed countries. The resurgence of pertussis has been associated with the expansion of Bordetella pertussis strains with a novel allele for the pertussis toxin (Ptx) promoter, ptxP3, which have replaced resident ptxP1 strains. Compared to ptxP1 strains, ptxP3 produce more Ptx resulting in increased virulence and immune suppression. To elucidate how B. pertussis has adapted to vaccination, we compared genome sequences of two ptxP3 strains with four strains isolated before and after the introduction vaccination. RESULTS: The distribution of SNPs in regions involved in transcription and translation suggested that changes in gene regulation play an important role in adaptation. No evidence was found for acquisition of novel genes. Modern strains differed significantly from prevaccination strains, both phylogenetically and with respect to particular alleles. The ptxP3 strains were found to have diverged recently from modern ptxP1 strains. Differences between ptxP3 and modern ptxP1 strains included SNPs in a number of pathogenicity-associated genes. Further, both gene inactivation and reactivation was observed in ptxP3 strains relative to modern ptxP1 strains. CONCLUSIONS: Our work suggests that B. pertussis adapted by successive accumulation of SNPs and by gene (in)activation. In particular changes in gene regulation may have played a role in adaptation
Inhibition of the Progesterone Nuclear Receptor during the Bone Linear Growth Phase Increases Peak Bone Mass in Female Mice
Augmentation of the peak bone mass (PBM) may be one of the most effective interventions to reduce the risk of developing osteoporosis later in life; however treatments to augment PBM are currently limited. Our study evaluated whether a greater PBM could be achieved either in the progesterone nuclear receptor knockout mice (PRKO) or by using a nuclear progesterone receptor (nPR) antagonist, RU486 in mice. Compared to their wild type (WT) littermates the female PRKO mice developed significantly higher cancellous and cortical mass in the distal femurs, and this was associated with increased bone formation. The high bone mass phenotype was partially reproduced by administering RU486 in female WT mice from 1–3 months of age. Our results suggest that the inhibition of the nPR during the rapid bone growth period (1–3 months) increases osteogenesis, which results in acquisition of higher bone mass. Our findings suggest a crucial role for progesterone signaling in bone acquisition and inhibition of the nPR as a novel approach to augment bone mass, which may have the potential to reduce the burden of osteoporosis
The Zwicky Transient Facility: System Overview, Performance, and First Results
The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg 2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF’s public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope
The Zwicky Transient Facility: Science Objectives
The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg2 field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding (“partnership”) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r∼20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects. © 2019. The Astronomical Society of the Pacific
The Zwicky Transient Facility: System Overview, Performance, and First Results
The Zwicky Transient Facility (ZTF) is a new optical time-domain survey that uses the Palomar 48 inch Schmidt telescope. A custom-built wide-field camera provides a 47 deg^2 field of view and 8 s readout time, yielding more than an order of magnitude improvement in survey speed relative to its predecessor survey, the Palomar Transient Factory. We describe the design and implementation of the camera and observing system. The ZTF data system at the Infrared Processing and Analysis Center provides near-real-time reduction to identify moving and varying objects. We outline the analysis pipelines, data products, and associated archive. Finally, we present on-sky performance analysis and first scientific results from commissioning and the early survey. ZTF's public alert stream will serve as a useful precursor for that of the Large Synoptic Survey Telescope
- …