468 research outputs found
Magnetic and structural properties of nanocrystalline PrCo
The structure and magnetic properties of nanocrystalline PrCo obtained
from high energy milling technique are investigated by X-ray diffraction, Curie
temperature determination and magnetic properties measurements are reported.
The as-milled samples have been annealed in a temperature range of 1023 K to
1273 K for 30 mn to optimize the extrinsic properties. The Curie temperature is
349\,K and coercive fields of 55\,kOe at 10\,K and 12\,kOe at 293\,K are
obtained on the samples annealed at 1023\,K. A simulation of the magnetic
properties in the framework of micromagnetism has been performed in order to
investigate the influence of the nanoscale structure. A composite model with
hard crystallites embedded in an amorphous matrix, corresponding to the
as-milled material, leads to satisfying agreement with the experimental
magnetization curve. [ K. Younsi, V. Russier and L. Bessais, J. Appl. Phys.
{\bf 107}, 083916 (2010)]. The microscopic scale will also be considered from
DFT based calculations of the electronic structure of Co compounds,
where = (Y, Pr) and = 2,3 and 5.Comment: To be published in J. Phys.: Conference Series in the JEMS 2010
special issue. To be found once published at
http://iopscience.iop.org/1742-659
Light to Shape the Future: From Photolithography to 4D Printing
Over the last few decades, the demand of polymeric structures with well-defined features of different size, dimension, and functionality has increased from various application areas, including microelectronics, biotechnology, tissue engineering, and photonics, among others. The ability of light to control over space and time physicochemical processes is a unique tool for the structuring of polymeric materials, opening new avenues for technological progress in different fields of application. This article gives an overview of various photochemical reactions in polymers, photosensitive materials, and structuring techniques making use of light, and highlights most recent advances, emerging opportunities, and relevant applications
Modelling the sigma phase
39th Edition of the Joint European Days on Equilibrium between Phases (JEEP), Nancy, FRANCE, MAR 19-21, 2013International audienceno abstrac
Genetic determinants of cortical structure (thickness, surface area and volumes) among disease free adults in the CHARGE Consortium
Cortical thickness, surface area and volumes (MRI cortical measures) vary with age and cognitive function, and in neurological and psychiatric diseases. We examined heritability, genetic correlations and genome-wide associations of cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprised 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the United Kingdom Biobank. Significant associations were replicated in the Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium, and their biological implications explored using bioinformatic annotation and pathway analyses. We identified genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There was enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging
The use of visual methods to explore how children construct and assign meaning to the ''self'' within two urban communities in the Western Cape, South Africa
This study aimed to explore how children construct and assign meaning to the ''self'' within two urban communities of
Cape Town in South Africa. Using a child participation methodological framework data were collected using Photovoice
and community maps with 54 participants between the ages of 9 and 12. Feelings of safety, social connectedness, and
children's spaces were found to be central to the ways in which the participants constructed and assigned meaning to the
''self.'' The study provides implications for intervention programmes aimed at improving children's well-being to be
inclusive of activities aimed at improving children's self-concept, including the construction of safe spaces for children to
play, learn, and form meaningful relationships
Magnesium based materials for hydrogen based energy storage: Past, present and future
Magnesium hydride owns the largest share of publications on solid materials for hydrogen storage. The “Magnesium group” of international experts contributing to IEA Task 32 “Hydrogen Based Energy Storage” recently published two review papers presenting the activities of the group focused on magnesium hydride based materials and on Mg based compounds for hydrogen and energy storage. This review article not only overviews the latest activities on both fundamental aspects of Mg-based hydrides and their applications, but also presents a historic overview on the topic and outlines projected future developments. Particular attention is paid to the theoretical and experimental studies of Mg-H system at extreme pressures, kinetics and thermodynamics of the systems based on MgH2, nanostructuring, new Mg-based compounds and novel composites, and catalysis in the Mg based H storage systems. Finally, thermal energy storage and upscaled H storage systems accommodating MgH2 are presented
Global and regional development of the human cerebral cortex:Molecular architecture and occupational aptitudes
We have carried out meta-analyses of genome-wide association studies (GWAS) (n = 23 784) of the first two principal components (PCs) that group together cortical regions with shared variance in their surface area. PC1 (global) captured variations of most regions, whereas PC2 (visual) was specific to the primary and secondary visual cortices. We identified a total of 18 (PC1) and 17 (PC2) independent loci, which were replicated in another 25 746 individuals. The loci of the global PC1 included those associated previously with intracranial volume and/or general cognitive function, such as MAPT and IGF2BP1. The loci of the visual PC2 included DAAM1, a key player in the planar-cell-polarity pathway. We then tested associations with occupational aptitudes and, as predicted, found that the global PC1 was associated with General Learning Ability, and the visual PC2 was associated with the Form Perception aptitude. These results suggest that interindividual variations in global and regional development of the human cerebral cortex (and its molecular architecture) cascade—albeit in a very limited manner—to behaviors as complex as the choice of one’s occupation
Can Sophie's Choice Be Adequately Captured by Cold Computation of Minimizing Losses? An fMRI Study of Vital Loss Decisions
The vast majority of decision-making research is performed under the assumption of the value maximizing principle. This principle implies that when making decisions, individuals try to optimize outcomes on the basis of cold mathematical equations. However, decisions are emotion-laden rather than cool and analytic when they tap into life-threatening considerations. Using functional magnetic resonance imaging (fMRI), this study investigated the neural mechanisms underlying vital loss decisions. Participants were asked to make a forced choice between two losses across three conditions: both losses are trivial (trivial-trivial), both losses are vital (vital-vital), or one loss is trivial and the other is vital (vital-trivial). Our results revealed that the amygdala was more active and correlated positively with self-reported negative emotion associated with choice during vital-vital loss decisions, when compared to trivial-trivial loss decisions. The rostral anterior cingulate cortex was also more active and correlated positively with self-reported difficulty of choice during vital-vital loss decisions. Compared to the activity observed during trivial-trivial loss decisions, the orbitofrontal cortex and ventral striatum were more active and correlated positively with self-reported positive emotion of choice during vital-trivial loss decisions. Our findings suggest that vital loss decisions involve emotions and cannot be adequately captured by cold computation of minimizing losses. This research will shed light on how people make vital loss decisions
- …