24 research outputs found

    Probing Cosmic Reionization and Molecular Gas Growth with TIME

    Get PDF
    Line intensity mapping (LIM) provides a unique and powerful means to probe cosmic structures by measuring the aggregate line emission from all galaxies across redshift. The method is complementary to conventional galaxy redshift surveys that are object-based and demand exquisite point-source sensitivity. The Tomographic Ionized-carbon Mapping Experiment (TIME) will measure the star formation rate (SFR) during cosmic reionization by observing the redshifted [CII] 158ÎŒ\mum line (6â‰Čzâ‰Č96 \lesssim z \lesssim 9) in the LIM regime. TIME will simultaneously study the abundance of molecular gas during the era of peak star formation by observing the rotational CO lines emitted by galaxies at 0.5â‰Čzâ‰Č20.5 \lesssim z \lesssim 2. We present the modeling framework that predicts the constraining power of TIME on a number of observables, including the line luminosity function, and the auto- and cross-correlation power spectra, including synergies with external galaxy tracers. Based on an optimized survey strategy and fiducial model parameters informed by existing observations, we forecast constraints on physical quantities relevant to reionization and galaxy evolution, such as the escape fraction of ionizing photons during reionization, the faint-end slope of the galaxy luminosity function at high redshift, and the cosmic molecular gas density at cosmic noon. We discuss how these constraints can advance our understanding of cosmological galaxy evolution at the two distinct cosmic epochs for TIME, starting in 2021, and how they could be improved in future phases of the experiment.Comment: 30 pages, 18 figures, accepted for publication in Ap

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Full text link
    CMB-S4---the next-generation ground-based cosmic microwave background (CMB) experiment---is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the Universe, from the highest energies at the dawn of time through the growth of structure to the present day. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semi-analytic projection tool, targeted explicitly towards optimizing constraints on the tensor-to-scalar ratio, rr, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2--3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments given a desired scientific goal. To form a closed-loop process, we couple this semi-analytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r>0.003r > 0.003 at greater than 5σ5\sigma, or, in the absence of a detection, of reaching an upper limit of r<0.001r < 0.001 at 95%95\% CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note: text overlap with arXiv:1907.0447

    CMB-S4

    Get PDF
    We describe the stage 4 cosmic microwave background ground-based experiment CMB-S4

    CMB-S4: Forecasting Constraints on Primordial Gravitational Waves

    Get PDF
    Abstract: CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL

    A status update on TIME: a mm-wavelength spectrometer designed to probe the Epoch of Reionization

    No full text
    TIME is an instrument being developed to study emission from faint objects in our universe using line intensity mapping (LIM) to understand the universe over cosmic time. The TIME instrument is a mm-wavelength grating spectrometer with Transition Edge Sensor (TES) bolometers measuring in the frequency range of 200-300 GHz with 60 spectral pixels and 16 spatial pixels. TIME will measure [CII] emission from redshift 5 to 9 to probe the evolution of our universe during the epoch of reionization. TIME will also measure low-redshift CO fluctuations and map molecular gas in the epoch of peak cosmic star formation from redshift 0.5 to 2. This instrument and the emerging technique of LIM will provide complementary measurements to typical galaxy surveys and illuminate the history of our universe. TIME was recently installed on the 12m ALMA prototype antenna operated by the Arizona Radio Observatory on Kitt Peak for an engineering test and will return for science observations in 2020

    A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data

    No full text
    We present a measurement of the cosmic microwave background lensing potential using 500 deg2 of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater than unity at lensing multipoles L lesssim 250, using a quadratic estimator on a combination of cosmic microwave background temperature and polarization maps. We report measurements of the lensing potential power spectrum in the multipole range of 100 < L < 2000 from sets of temperature-only (T), polarization-only (POL), and minimum-variance (MV) estimators. We measure the lensing amplitude by taking the ratio of the measured spectrum to the expected spectrum from the best-fit Λ cold dark matter model to the Planck 2015 TT + low P + lensing data set. For the minimum-variance estimator, we find AMV=0.944±0.058(Stat.)±0.025 (Sys.);{A}_{\mathrm{MV}}=0.944\pm 0.058(\mathrm{Stat}.)\pm 0.025\ (\mathrm{Sys}.); restricting to only polarization data, we find APOL=0.906±0.090 (Stat.)±0.040 (Sys.){A}_{\mathrm{POL}}=0.906\pm 0.090\ (\mathrm{Stat}.)\pm 0.040\ (\mathrm{Sys}.). Considering statistical uncertainties alone, this is the most precise polarization-only lensing amplitude constraint to date (10.1σ) and is more precise than our temperature-only constraint. We perform null tests and consistency checks and find no evidence for significant contamination

    A demonstration of improved constraints on primordial gravitational waves with delensing

    No full text
    We present a constraint on the tensor-to-scalar ratio, r, derived from measurements of cosmic microwave background (CMB) polarization B-modes with “delensing,” whereby the uncertainty on r contributed by the sample variance of the gravitational lensing B-modes is reduced by cross-correlating against a lensing B-mode template. This template is constructed by combining an estimate of the polarized CMB with a tracer of the projected large-scale structure. The large-scale-structure tracer used is a map of the cosmic infrared background derived from Planck satellite data, while the polarized CMB map comes from a combination of South Pole Telescope, bicep/Keck, and Planck data. We expand the bicep/Keck likelihood analysis framework to accept a lensing template and apply it to the bicep/Keck dataset collected through 2014 using the same parametric foreground modeling as in the previous analysis. From simulations, we find that the uncertainty on r is reduced by ∌10%, from σ(r)=0.024 to 0.022, which can be compared with a ∌26% reduction obtained when using a perfect lensing template or if there were zero lensing B-modes. Applying the technique to the real data, the constraint on r is improved from r0.05<0.090 to r0.05<0.082 (95% C.L.). This is the first demonstration of improvement in an r constraint through delensing

    CCAT-prime Collaboration: Science Goals and Forecasts with Prime-Cam on the Fred Young Submillimeter Telescope

    Get PDF
    We present a detailed overview of the science goals and predictions for the Prime-Cam direct-detection camera-spectrometer being constructed by the CCAT-prime collaboration for dedicated use on the Fred Young Submillimeter Telescope (FYST). The FYST is a wide-field, 6 m aperture submillimeter telescope being built (first light in late 2023) by an international consortium of institutions led by Cornell University and sited at more than 5600 m on Cerro Chajnantor in northern Chile. Prime-Cam is one of two instruments planned for FYST and will provide unprecedented spectroscopic and broadband measurement capabilities to address important astrophysical questions ranging from Big Bang cosmology through reionization and the formation of the first galaxies to star formation within our own Milky Way. Prime-Cam on the FYST will have a mapping speed that is over 10 times greater than existing and near-term facilities for high-redshift science and broadband polarimetric imaging at frequencies above 300 GHz. We describe details of the science program enabled by this system and our preliminary survey strategies
    corecore