290 research outputs found

    Some aspects of zinc accumulation in submerged photosynthetic plants in a high zinc-level stream

    Get PDF
    During the course of the present study data was collected in relation to the accumulation of zinc in submerged plant species in an upland stream flowing through a mineralised area. The zinc contents of seven submerged species of algae and bryophytes were determined and related to the chemistry of the water from which they were collected. Accumulation is approximately linear for a number of species within defined environmental limits of zinc. Evidence from transplant experiments does not support the view that tolerant strains of Scapania undulata (L.) Dum. exist. The use of plants as reliable monitors of elevated levels of zinc in natural waters and the inter-relationship of environmental parameters are discussed. The possibility of using transplant techniques to monitor zinc levels is further discussed

    Scaled simulation of the blast effects on structures using lego blocks: a pilot study

    Get PDF
    Blast effects on structures is an important topic in this modern age for many practising engineers, including structural engineers designing buildings for safety or weapons engineers attempting to destroy enemy infrastructure. Due to the large costs, time demands, space requirements and expertise required, full scale testing is rarely a feasible approach. As such it is important to be able to effectively model the blast effects on structures. Currently, computer modelling techniques are extensively used, however the results of these models are often difficult to verify, whilst requiring experienced expert users to ensure accurate data

    Acute tryptophan depletion attenuates conscious appraisal of social emotional signals in healthy female volunteers

    Get PDF
    Rationale: Acute tryptophan depletion (ATD) decreases levels of central serotonin. ATD thus enables the cognitive effects of serotonin to be studied, with implications for the understanding of psychiatric conditions, including depression. Objective: To determine the role of serotonin in conscious (explicit) and unconscious/incidental processing of emotional information. Materials and methods: A randomized, double-blind, cross-over design was used with 15 healthy female participants. Subjective mood was recorded at baseline and after 4 h, when participants performed an explicit emotional face processing task, and a task eliciting unconscious processing of emotionally aversive and neutral images presented subliminally using backward masking. Results: ATD was associated with a robust reduction in plasma tryptophan at 4 h but had no effect on mood or autonomic physiology. ATD was associated with significantly lower attractiveness ratings for happy faces and attenuation of intensity/arousal ratings of angry faces. ATD also reduced overall reaction times on the unconscious perception task, but there was no interaction with emotional content of masked stimuli. ATD did not affect breakthrough perception (accuracy in identification) of masked images. Conclusions: ATD attenuates the attractiveness of positive faces and the negative intensity of threatening faces, suggesting that serotonin contributes specifically to the appraisal of the social salience of both positive and negative salient social emotional cues. We found no evidence that serotonin affects unconscious processing of negative emotional stimuli. These novel findings implicate serotonin in conscious aspects of active social and behavioural engagement and extend knowledge regarding the effects of ATD on emotional perception

    Numerical modelling of hydrogen leakages in confined spaces for domestic applications

    Get PDF
    The UK government tentatively plans to use hydrogen for domestic applications by 2035. While the use of hydrogen aims to reduce the dependence on hydrocarbons, certain factors need consideration. Since hydrogen is much lighter, and more reactive than methane, it is crucial to understand the change in risk for accident scenarios involving hydrogen in a domestic setting. Numerical modelling was used to simulate the leakage of hydrogen and methane in small, enclosed spaces such as kitchen cupboards. The k- ε turbulence model was used along with the species transport model to simulate the leakage of gas for different inlet locations and leak diameters (1.8 mm–7.2 mm). From the modelling study, it was observed that hydrogen and methane both tend to stratify from top of the control volume to the bottom. The key finding was that, under adverse conditions (leak from a 7.2 mm diameter hole) and due to greater volumetric flow, hydrogen tends to reach equilibrium concentration 45s faster than methane for a total leak duration of 600s. Additionally, it was noted that cases with leak inlet locations near corners had 28% lower hydrogen concentrations, and 25% lower methane concentrations as compared to leak inlet locations near the centre of the cupboard.The work was supported by Cranfield University and DNV Energy Systems, UK

    Penetration performance of protective materials from crossbow attack: a preliminary study

    Get PDF
    Crossbow-related injuries resulting in serious and mortal consequences have increased in recent years, and although significant research exists for both injury and fatality on the human body, limited data exists on the lethality of the bolt and the failure modes of protective materials. This paper concerns itself with the experimental validation of four differing crossbow bolt geometries, their effects on material failure and potentially lethality. During this study, four different types of crossbow bolt geometries were tested against two protection mechanisms that differed in mechanical properties, geometry, mass and size. The results show that at 67 ms−1, ogive, field and combo tips do not provide lethal effect at 10-m range, whilst a broadhead tip will perforate both the para-aramid and a reinforced area of polycarbonate material consisting of two 3-mm plates at 63–66 ms−1. Although perforation was apparent with a more honed tip geometry, the chain mail layering within the para-aramid protection and friction caused by polycarbonate petalling on the arrow body reduced the velocity enough to demonstrate the materials under test are effective at withstanding crossbow attack. Subsequent calculation of the maximum velocity that arrows could achieve if fired from the crossbow within this study shows results close to the overmatch value of each material and therefore a requirement to advance the knowledge in this field to influence the development of more effective armour protection mechanisms

    A comparison of far-field explosive loads by a selection of current and emerging blast software

    Get PDF
    In blast resistant design, simulation data may be used to generate the explosive loads that would be witnessed by the detonation of a high explosive device. There are many software packages available to simulate explosions, and this study aims to provide a comparison of a selection of them, including some recently available, with the aim of forming an understanding of the potential accuracies and speed of these in far-field explosive prediction. Software selection criteria were formed by a literature survey to highlight the commonly commercially used programmes. Each software package was used to predict the far-field effects of overpressure and specific impulse from two explosive charges against a reflective target. The data generated by these simulations were then critically compared and reviewed, both with respect to each other and, for the 100 kg charge size, with respect to experimental data. It shows that for the simulated scenarios, after domain and cell size fidelity studies have been performed, the choice of software may lead to a variance in prediction in the peak overpressure of up to 50%, specific impulse of up to 15%, and simulation run times by a factor of 600

    Soft tissue simulants for survivability assessment—a sustainability focussed review

    Get PDF
    Traditionally, human cadavers and porcine tissue have been used as means to replicate elements of the human body; however, because of the differences in biomechanical properties from the porcine limbs/organs and the potential for degradation of mechanical properties caused by ageing, they do not provide accurate material for either lethality or survivability assessment. In the 21st century and with more ethical ways of working being employed, the use of soft tissue analogues to undertake ballistic testing has become routinely accepted. However, gaps in the literature exist that have identified a difference in material characterisation. Procedurally, every researcher manufactures the gelatine differently, which, when combined with a lack of calibration procedures, can cause inconsistencies in output data, and additional concerns exist surrounding the repeatability of re-mouldable simulants, such as Perma-Gel®. Further, limited information is available on the environmental impact of ‘1 shot’ items, such as ballistic gelatine, which has become a well-known and widely accepted material for survivability assessment. This review identifies key inconsistencies within the literature, the risk associated with survivability assessment, and potential solutions to the issues identified within, with outcomes showing that the current methodologies for survivability assessment do not align with the wider UK government ambition of being Net Zero by 2050 unless changes are made.This research was supported by Cranfield Forensics Institute, The Defence Ordnance Safety Group, and Defence Equipment and Support

    A selected ion flow tube study of the reactions of gas-phase cations with PSCl3

    Get PDF
    A selected ion flow tube was used to investigate the positive ion chemistry of thiophosphoryl chloride, PSCl3_3. Rate coefficients and ion product branching ratios have been determined at room temperature for reactions with nineteen cations ; H3_3O+^+, CF3+_3^+, CF+^+, NO+^+, NO2+_2^+, SF2+_2^+, SF+^+, CF2+_2^+, O2+_2^+, H2_2O+^+, N2_2O+^+, O+^+, CO2+_2^+, CO+^+, N+^+, N2+_2^+, Ar+^+, F+^+ and Ne+^+ (in order of increasing recombination energy). Complementary data described in the previous paper have been obtained for this molecule via the observation of threshold photoelectron photoion coincidences. For ions whose recombination energies are in the range 10-22 eV, comparisons are made between the product ion branching rations of PSCl3_3 from photoionisation and from ion-molecule reactions. In most instances, the data from the two experiments are well correlated, suggesting that long-range charge transfer is the dominant mechanism for these ion-molecule reactions ; the agreement is particularly good for the atomic ions Ar+^+, F+^+ and Ne+^+. Some reactions (e.g. O2+_2^+ + PSCl3_3), however, exhibit significant differences; short-range charge transfer must then be occurring following the formation of an ion-molecule complex. For ions whose recombination energies are less than 10 eV (i.e. H3_3O+^+, CF3+_3^+, CF+^+ and NO+^+), reactions can only occur via a chemical process in which bonds are broken and formed, because the recombination energy of the cation is less than the ionisation energy of PSCl3_3

    Ballistic research techniques: visualizing gunshot wounding patterns

    Get PDF
    There are difficulties associated with mapping gunshot wound (GSW) patterns within opaque models. Depending on the damage measurement parameters required, there are multiple techniques that can provide methods of “seeing” the GSW pattern within an opaque model. The aim of this paper was to test several of these techniques within a cadaveric animal limb model to determine the most effective. The techniques of interest were flash X-ray, ultrasound, physical dissection, and computed-tomography (CT). Fallow deer hind limbs were chosen for the model with four limbs used for each technique tested. Quarantined 7.62 × 39 mm ammunition was used for each shot, and each limb was only shot once, on an outdoor range with shots impacting at muzzle velocity. Flash X-ray provided evidence of yaw within the limb during the projectile’s flight; ultrasound though able to visualise the GSW track, was too subjective and was abandoned; dissection proved too unreliable due to the tissue being cadaveric so also too subjective; and lastly, CT with contrast provided excellent imaging in multiple viewing planes and 3D image reconstruction; this allowed versatile measurement of the GSW pattern to collect dimensions of damage as required. Of the different techniques examined in this study, CT with contrast proved the most effective to allow precise GSW pattern analysis within a cadaveric animal limb model. These findings may be beneficial to others wishing to undertake further ballistic study both within clinical and forensic fields
    corecore