110 research outputs found
Tumor-Targeting Anti-CD20 Antibodies Mediate In Vitro Expansion of Memory Natural Killer Cells: Impact of CD16 Affinity Ligation Conditions and In Vivo Priming
Natural Killer (NK) cells represent a pivotal player of innate anti-tumor immune responses. The impact of environmental factors in shaping the representativity of different NK cell subsets is increasingly appreciated. Human Cytomegalovirus (HCMV) infection profoundly affects NK cell compartment, as documented by the presence of a CD94/NKG2C+FcâRIâ„- long-lived âmemoryâ NK cell subset, endowed with enhanced CD16-dependent functional capabilities, in a fraction of HCMV seropositive subjects. However, the requirements for memory NK cell pool establishment/maintenance and activation have not been fully characterised yet.
Here we describe the capability of anti-CD20 tumor-targeting therapeutic monoclonal antibodies (mAbs) to drive the selective in vitro expansion of memory NK cells, and we show the impact of donor' HCMV serostatus and CD16 affinity ligation conditions on this event. In vitro expanded memory NK cells maintain the phenotypic and functional signature of their freshly isolated counterpart; furthermore, our data demonstrate that CD16 affinity ligation conditions differently affect memory NK cell proliferation and functional activation, as rituximab-mediated low-affinity ligation represents a superior proliferative stimulus, while high-affinity aggregation mediated by glycoengineered obinutuzumab results in improved multifunctional responses. Our work also expands the molecular and functional characterization of memory NK cells, and investigates the possible impact of CD16 functional allelic variants on their in vivo and in vitro expansion. These results reveal new insights in Ab-driven memory NK cell responses in a therapeutic setting, and may ultimately inspire new NK cell-based intervention strategies against cancer, in which the enhanced responsiveness to mAb-bound target could significantly impact therapeutic efficacy
The glycoside oleandrin reduces glioma growth with direct and indirect effects on tumor cells
Oleandrin is a glycoside that inhibits the ubiquitous enzyme Na(+)/K(+)-ATPase. In addition to its known effects on cardiac muscle, recent in vitro and in vivo evidence highlighted its potential for anticancer properties. Here, we evaluated for the first time the effect of oleandrin on brain tumors. To this aim, mice were transplanted with human or murine glioma and analyzed for tumor progression upon oleandrin treatment. In both systems, oleandrin impaired glioma development, reduced tumor size, and inhibited cell proliferation. We demonstrated that oleandrin does the following: (1) enhances the brain-derived neurotrophic factor (BDNF) level in the brain; (2) reduces both microglia/macrophage infiltration and CD68 immunoreactivity in the tumor mass; (3) decreases astrogliosis in peritumoral area; and (4) reduces glioma cell infiltration in healthy parenchyma. In BDNF-deficient mice (bdnftm1Jae/J) and in glioma cells silenced for TrkB receptor expression, oleandrin was not effective, indicating a crucial role for BDNF in oleandrin's protective and antitumor functions. In addition, we found that oleandrin increases survival of temozolomide-treated mice. These results encourage the development of oleandrin as possible coadjuvant agent in clinical trials of glioma treatment.SIGNIFICANCE STATEMENT In this work, we paved the road for a new therapeutic approach for the treatment of brain tumors, demonstrating the potential of using the cardioactive glycoside oleandrin as a coadjuvant drug to standard chemotherapeutics such as temozolomide. In murine models of glioma, we demonstrated that oleandrin significantly increased mouse survival and reduced tumor growth both directly on tumor cells and indirectly by promoting an antitumor brain microenvironment with a key protective role played by the neurotrophin brain-derived neurotrophic factor
Applying colorimetry for wood differentiation of fabaceae species grown in southern brazil
Because of the need for identification of forest species, especially for detection of illegal wood trade, the objective of this study was to evaluate the potential of colorimetry for differentiation of Inga vera Willd., Muellera campestris (Mart. ex Benth.) M.J. Silva & A.M.G. Azevedo and Machaerium paraguariense Hassl., species of the Fabaceae family, native to the Araucaria Forest in the state of Santa Catarina, southern Brazil. Discs at breast height were collected from three trees of each species and the colorimetric parameters (L*, a*, b*, C* and h) and visible spectra were evaluated in different radial position of the trunk (near bark, intermediate and near pith) and three different anatomical sections (transversal, radial and tangential surfaces). Mean values of hue angle (h) among the colorimetric parameters resulted in the highest potential for species discrimination. With respect to radial trunk position and anatomical section, parameters a* (green-red) and h were not statistically different, independent of the wood samples evaluated. For other parameters (L*, b* and C*), each species presented distinct results. Principal component analysis with second derivative of visible spectra discriminated all species. Colorimetry associated with chemometrics allowed to distinguish I. vera, M. campestris and M. paraguariense
Hyperspectral leaf area index and chlorophyll retrieval over forest and row-structured vineyard canopies
As an unprecedented stream of decametric hyperspectral observations becomes available from recent and upcoming spaceborne missions, effective algorithms are required to retrieve vegetation biophysical and biochemical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC). In the context of missions such as the Environmental Mapping and Analysis Program (EnMAP), Precursore Iperspettrale della Missione Applicativa (PRISMA), Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), and Surface Biology Geology (SBG), several retrieval algorithms have been developed based upon the turbid medium Scattering by Arbitrarily Inclined Leaves (SAIL) radiative transfer model. Whilst well suited to cereal crops, SAIL is known to perform comparatively poorly over more heterogeneous canopies (including forests and row-structured crops). In this paper, we investigate the application of hybrid radiative transfer models, including a modified version of SAIL (rowSAIL) and the Invertible Forest Reflectance Model (INFORM), to such canopies. Unlike SAIL, which assumes a horizontally homogeneous canopy, such models partition the canopy into geometric objects, which are themselves treated as turbid media. By enabling crown transmittance, foliage clumping, and shadowing to be represented, they provide a more realistic representation of heterogeneous vegetation. Using airborne hyperspectral data to simulate EnMAP observations over vineyard and deciduous broadleaf forest sites, we demonstrate that SAIL-based algorithms provide moderate retrieval accuracy for LAI (RMSD = 0.92â2.15, NRMSD = 40â67%, bias = â0.64â0.96) and CCC (RMSD = 0.27â1.27 g mâ2, NRMSD = 64â84%, bias = â0.17â0.89 g mâ2). The use of hybrid radiative transfer models (rowSAIL and INFORM) reduces bias in LAI (RMSD = 0.88â1.64, NRMSD = 27â64%, bias = â0.78ââ0.13) and CCC (RMSD = 0.30â0.87 g mâ2, NRMSD = 52â73%, bias = 0.03â0.42 g mâ2) retrievals. Based on our results, at the canopy level, we recommend that hybrid radiative transfer models such as rowSAIL and INFORM are further adopted for hyperspectral biophysical and biochemical variable retrieval over heterogeneous vegetation
Multicentre harmonisation of a six-colour flow cytometry panel for naĂŻve/memory T cell immunomonitoring
Background. Personalised medicine in oncology needs standardised immunological assays. Flow cytometry (FCM) methods represent an essential tool for immunomonitoring, and their harmonisation is crucial to obtain comparable data in multicentre clinical trials. The objective of this study was to design a harmonisation workflow able to address the most effective issues contributing to intra- and interoperator variabilities in a multicentre project. Methods. The Italian National Institute of Health (Istituto Superiore di Sanita, ISS) managed a multiparametric flow cytometric panel harmonisation among thirteen operators belonging to five clinical and research centres of Lazio region (Italy). The panel was based on a backbone mixture of dried antibodies (anti-CD3, anti-CD4, anti-CD8, anti-CD45RA, and anti-CCR7) to detect naive/memory T cells, recognised as potential prognostic/predictive immunological biomarkers in cancer immunotherapies. The coordinating centre distributed frozen peripheral blood mononuclear cells (PBMCs) and fresh whole blood (WB) samples from healthy donors, reagents, and Standard Operating Procedures (SOPs) to participants who performed experiments by their own equipment, in order to mimic a real-life scenario. Operators returned raw and locally analysed data to ISS for central analysis and statistical elaboration. Results. Harmonised and reproducible results were obtained by sharing experimental set-up and procedures along with centralising data analysis, leading to a reduction of cross-centre variability for naive/memory subset frequencies particularly in the whole blood setting. Conclusion. Our experimental and analytical working process proved to be suitable for the harmonisation of FCM assays in a multicentre setting, where high-quality data are required to evaluate potential immunological markers, which may contribute to select better therapeutic options
How to integrate surgery and targeted therapy with biologics for the treatment of hidradenitis suppurativa: Delphi consensus statements from an Italian expert panel
Hidradenitis suppurativa (HS) is a chronic inflammatory skin disease characterized by recurrent and painful nodules and abscesses in intertriginous skin areas, which can progress to sinus tract formation, tissue destruction, and scarring. HS is highly debilitating and severely impairs the psychological well-being and quality of life of patients. The therapeutic approach to HS is based on medical therapy and surgery. First-line medical therapy includes topical antibiotics, systemic antibiotics, and biologics. Main surgical procedures include deroofing, local excision, and wide local excision. Despite the availability of multiple therapeutic options, the rates of disease recurrence and progression continue to be high. In recent years, the possibility of combining biologic therapy and surgery has raised considerable interest. In a clinical trial, the perioperative use of adalimumab has been associated with greater response rates and improved inflammatory load and pain, with no increased risk of postoperative infectious complications. However, several practical aspects of combined biologic therapy and surgery are poorly defined. In June 2022, nine Italian HS experts convened to address issues related to the integration of biologic therapy and surgery in clinical practice. To this purpose, the experts identified ten areas of interest based on published evidence and personal experience: 1) patient profiling (diagnostic criteria, disease severity classification, assessment of response to treatment, patient-reported outcomes, comorbidities); 2) tailoring surgery to HS characteristics; 3) wide local excision; 4) pre-surgery biologic treatment; 5) concomitant biologic and surgical treatments; 6) pre- and post-surgery management; 7) antibiotic systemic therapy; 8) biologic therapy after radical surgery; 9) management of adverse events to biologics; 10) management of postoperative infectious complications. Consensus between experts was reached using the Estimate-Talk-Estimate method (Delphi Method). The statements were subsequently presented to a panel of 27 HS experts from across Italy, and their agreement was assessed using the UCLA Appropriateness Method. This article presents and discusses the consensus statements
Functional Cytology of the Hepatopancreas of Palaemonetes argentinus (Crustacea, Decapoda, Caridea) Under Osmotic Stress
The present work describes the effect of different salinities on the functional morphology of the P. argentinus hepatopancreas and analyses the tissue recovery after re-acclimation to freshwater. Adult prawns of both sexes at sexual rest were collected from a tributary of the Mar Chiquita coastal lagoon. The prawns were acclimated in aquaria to four salinity conditions: 0 (control), 8, 16 and 24â°. To evaluate the possible tissular recovery, after 60 days individuals from all the treatments were gradually acclimated to freshwater and maintained for other 30 days.
Hepatopancreas samples were processed at the beginning of the trial and every 30 days using standard histological techniques for OM and TEM. The individuals from all the treatments, except the controls, showed a continuous weight decrease, and survival was lower when higher the salinity. At 30 days from the beginning of the experiment, hepatopancreas from 16 and 24â° salinities showed an enlarged tubular lumen and an infolded basal lamina.
Ultratructurally, nuclear retraction, cytoplasmolysis, and RER membranes separated with electron-dense content were observed in all the treatments except 0â°. After 60 days, profound alterations were observed with the three treatments. After the re-acclimation period, there was no reestablishment of the functional cytology. The tolerance to short-term salinity changes explains the capability of this prawn to inhabit in estuarine environments
Prefrontal Norepinephrine Determines Attribution of âHighâ Motivational Salience
Intense motivational salience attribution is considered to have a major role in the development of different psychopathologies. Numerous brain areas are involved in ânormalâ motivational salience attribution processes; however, it is not clear whether common or different neural mechanisms also underlie intense motivational salience attribution. To elucidate this a brain area and a neural system had to be envisaged that were involved only in motivational salience attribution to highly salient stimuli. Using intracerebral microdialysis, we found that natural stimuli induced an increase in norepinephrine release in the medial prefrontal cortex of mice proportional to their salience, and that selective prefrontal norepinephrine depletion abolished the increase of norepinephrine release in the medial prefrontal cortex induced by exposure to appetitive (palatable food) or aversive (light) stimuli independently of salience. However, selective norepinephrine depletion in the medial prefrontal cortex impaired the place conditioning induced exclusively by highly salient stimuli, thus indicating that prefrontal noradrenergic transmission determines approach or avoidance responses to both reward- and aversion-related natural stimuli only when the salience of the unconditioned natural stimulus is high enough to induce sustained norepinephrine outflow. This affirms that prefrontal noradrenergic transmission determines motivational salience attribution selectively when intense motivational salience is processed, as in conditions that characterize psychopathological outcomes
Development and implementation of the AIDA International Registry for patients with Periodic Fever, Aphthous stomatitis, Pharyngitis, and cervical Adenitis syndrome
Objective: Aim of this paper is to illustrate the methodology, design, and development of the AutoInflammatory Disease Alliance (AIDA) International Registry dedicated to patients with the Periodic Fever, Aphthous stomatitis, Pharyngitis, and cervical Adenitis (PFAPA) syndrome. Methods: This is a physician-driven, non-population- and electronic-based registry proposed to gather real-world demographics, clinical, laboratory, instrumental and socioeconomic data from PFAPA patients. Data recruitment is realized through the on-line Research Electronic Data Capture (REDCap) tool. This registry is thought to collect standardized information for clinical research leading to solid real-life evidence. The international scope and the flexibility of the registry will facilitate the realization of cutting-edge study projects through the constant updating of variables and the possible merging and transfer of data between current and future PFAPA registries. Results: A total of 112 centers have already been involved from 23 countries and 4 continents starting from August 24th, 2021, to April 6th, 2022. In total 56/112 have already obtained the formal approval from their local Ethics Committees. The platform counts 321 users (113 principal investigators, 203 site investigators, two lead investigators, and three data managers). The registry collects retrospective and prospective data using 3,856 fields organized into 25 instruments, including PFAPA patient's demographics, medical histories, symptoms, triggers/risk factors, therapies, and impact on the healthcare systems. Conclusions: The development of the AIDA International Registry for PFAPA patients will enable the on-line collection of standardized data prompting real-life studies through the connection of worldwide groups of physicians and researchers. This project can be found on NCT 05200715
- âŠ