6 research outputs found

    A Thiadiazole-capped Nanoribbon with 18 Linearly-Fused Rings

    Get PDF
    Polycyclic aromatic hydrocarbons that extend over 2 nm in one dimension are seen as monodisperse graphene nanoribbons, which have attracted significant attention for a broad range of applications in organic electronics and photonics. Herein we report the synthesis of a stable bisthiadiazole-capped pyrene-containing nanoribbon with 18 linearly fused rings (NR-18-TD). Thanks to the presence of alternating tert-butyl and tri-iso-butylsilyl groups, NR-18-TD is highly soluble in organic solvents and therefore its structure and fundamental optoelectronic, redox and electrical properties could be unambiguously established. This work illustrates that NR-18-TD is a promising soluble NR-based n-type semiconductor for applications in organic electronics.The authors are grateful to the Basque Science Foundation for Science (Ikerbasque), POLYMAT, the University of the Basque Country (Grupo de Investigación GIU17/054 and SGIker), Gobierno de España (Ministerio de Economía y Competitividad CTQ2016-77970-R and CTQ2015-71936-REDT), Gobierno Vasco (BERC program), CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT ref. UID/CTM/50011/2013), Diputación Foral de Guipúzcoa (OF215/2016(ES)) and the FP7 framework program of the European Union (Marie Curie Career Integration Grant No. 618247 (NIRVANA)). This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no. 664878. This project has also received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 722951

    Self-assembled mixed-stacks of acene derivatives for organic electronics

    No full text
    281 p.Retirada 25-01-2022 a solicitud del director de la tesisLa electrónica orgánica estudia materiales semiconductores basados en carbono para su implementación en dispositivos electrónicos. Los usos de materiales orgánicos en comparación con los inorgánicos presentan una serie de beneficios ya que se pueden producir de una manera más específica manipulando su estructura química. Además, presentan propiedades prometedoras debido a su ligereza y flexibilidad capaces de producirse en grandes superficies con técnicas de producción menos costosas. Todo ello de una manera más sostenible y menos perjudicial para el medio ambiente. Sin embargo, estos materiales materiales presentan menor estabilidad, solubilidad y requieren de un entendimiento de su organización a nivel supramolecular ya que estos factores están relacionados con el buen funcionamiento de los dispositivos electrónicos tales como: transistores orgánicos de efecto de campo, diodos emisores y celdas fotovoltaicas.El objetivo de esta Tesis Doctoral es investigar el ordenamiento de sistemas aromáticos semiconductores por autoensamblaje de acenos y azaacenos como es el caso del antraceno y las fenazinas. Se estudiará su intercalación, estabilidad y organización supramolecular. Finalmente se estudiarán sus propiedades semiconductoras.Polymat: Basque Center for Macromeloecular Design and Engineering CICnanoGUN

    Self-assembled mixed-stacks of acene derivatives for organic electronics

    Get PDF
    281 p.La electrónica orgánica estudia materiales semiconductores basados en carbono para su implementación en dispositivos electrónicos. Los usos de materiales orgánicos en comparación con los inorgánicos presentan una serie de beneficios ya que se pueden producir de una manera más específica manipulando su estructura química. Además, presentan propiedades prometedoras debido a su ligereza y flexibilidad capaces de producirse en grandes superficies con técnicas de producción menos costosas. Todo ello de una manera más sostenible y menos perjudicial para el medio ambiente. Sin embargo, estos materiales materiales presentan menor estabilidad, solubilidad y requieren de un entendimiento de su organización a nivel supramolecular ya que estos factores están relacionados con el buen funcionamiento de los dispositivos electrónicos tales como: transistores orgánicos de efecto de campo, diodos emisores y celdas fotovoltaicas.El objetivo de esta Tesis Doctoral es investigar el ordenamiento de sistemas aromáticos semiconductores por autoensamblaje de acenos y azaacenos como es el caso del antraceno y las fenazinas. Se estudiará su intercalación, estabilidad y organización supramolecular. Finalmente se estudiarán sus propiedades semiconductoras.Polymat: Basque Center for Macromeloecular Design and Engineering CICnanoGUN

    Charge transport modulation in pseudorotaxane 1D stacks of acene and azaacene derivatives

    No full text
    Acenes have received a lot of attention because of their inherent and tunable absorbing, emissive, and charge transport properties for electronic, photovoltaic, and singlet fission applications, among others. Such properties are directly governed by molecular packing, and therefore, controlling their arrangement in the solid state is of utmost importance in order to increase their performance. Herein, we describe a new solid-state ordering strategy that allows obtaining 1D mixed pi-stacks of acene and azaacene derivatives. In addition, we illustrate that charge transport can be modulated by the electronic nature of the encapsulated phenazine, opening new perspectives in the design, preparation and development of supramolecular organic semiconductors.We are grateful to the Basque Science Foundation for Science (Ikerbasque), POLYMAT, the University of the Basque Country (Grupo de Investigacion GIU17/054 and SGIker), Gobierno de Espana (Ministerio de Economia y Competitividad and FEDER CTQ2016-77970-R), Gobierno Vasco (BERC programme), the Portuguese Foundation for Science and Technology (IF/00894/2015) and CICECO - Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT ref. UID/CTM/50011/2013). J. C. thanks support from MINECO/FEDER of Spain Government (CTQ2015-69391-P) and J. L. Z. thanks the Research Central Services (SCAI) of the University of Malaga. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 664878. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no 722951)

    Leveraging Halogen Interactions for a Supramolecular Nanotube.

    No full text
    We demonstrate the formation of supramolecular nanotubes from molecular triangles in a single crystal by balancing the hydrogen bonds and halogen interactions between individual macrocycles. Thereby, we template the supramolecular nanotube growth by intermolecular interactions encoded directly in the macrocycles instead of those provided by the crystallization solvent. Ultimately, we show that replacing bromines for iodines in the macrocycle is necessary to achieve this supramolecular organization by enhancing the strength of the halogen interactions and concomitant reduction of the detrimental hydrogen bonds. We investigated the nature and the interplay of the individual intermolecular interactions by analysis of the experimental single crystal data and quantum chemical calculations. This work enriches the available toolbox of interactions to construct supramolecular nanotubes, and will aid and abet the development of rationally-designed materials with a long-range 1D organization
    corecore