2,349 research outputs found

    Clash of Titans: The Impact of Cluster Mergers in the Galaxy Cluster Red Sequence

    Full text link
    Merging of galaxy clusters are some of the most energetic events in the Universe, and they provide a unique environment to study galaxy evolution. We use a sample of 84 merging and relaxed SPT galaxy clusters candidates, observed with the Dark Energy Camera in the 0.11<z<0.880.11<z<0.88 redshift range, to build colour-magnitude diagrams to characterize the impact of cluster mergers on the galaxy population. We divided the sample between relaxed and disturbed, and in two redshifts bin at z=0.55z = 0.55. When comparing the high-z to low-z clusters we find the high-z sample is richer in blue galaxies, independently of the cluster dynamical state. In the high-z bin we find that disturbed clusters exhibit a larger scatter in the Red Sequence, with wider distribution and an excess of bluer galaxies compared to relaxed clusters, while in the low-z bin we find a complete agreement between the relaxed and disturbed clusters. Our results support the scenario in which massive cluster halos at z<0.55z<0.55 galaxies are quenched as satellites of another structure, i.e. outside the cluster, while at z0.55z \geq 0.55 the quenching is dominated by in-situ processes.Comment: 9 pages, 5 figures, paper accepted in MNRA

    Transport on percolation clusters with power-law distributed bond strengths: when do blobs matter?

    Get PDF
    The simplest transport problem, namely maxflow, is investigated on critical percolation clusters in two and three dimensions, using a combination of extremal statistics arguments and exact numerical computations, for power-law distributed bond strengths of the type P(σ)σαP(\sigma) \sim \sigma^{-\alpha}. Assuming that only cutting bonds determine the flow, the maxflow critical exponent \ve is found to be \ve(\alpha)=(d-1) \nu + 1/(1-\alpha). This prediction is confirmed with excellent accuracy using large-scale numerical simulation in two and three dimensions. However, in the region of anomalous bond capacity distributions (0α10\leq \alpha \leq 1) we demonstrate that, due to cluster-structure fluctuations, it is not the cutting bonds but the blobs that set the transport properties of the backbone. This ``blob-dominance'' avoids a cross-over to a regime where structural details, the distribution of the number of red or cutting bonds, would set the scaling. The restored scaling exponents however still follow the simplistic red bond estimate. This is argued to be due to the existence of a hierarchy of so-called minimum cut-configurations, for which cutting bonds form the lowest level, and whose transport properties scale all in the same way. We point out the relevance of our findings to other scalar transport problems (i.e. conductivity).Comment: 9 pages + Postscript figures. Revtex4+psfig. Submitted to PR

    Preliminary Results from a Study Investigating the Transition from Capstone Design to Industry

    Get PDF
    This study investigates engineering students’ transitions from academic to professional environments by examining the role capstone design courses play in preparing graduates for the workplace. To better understand how capstone design experiences contribute to graduates’ professional preparation, we are collecting data from participants from four different institutions with project-based capstone courses as they begin post-graduation positions in a variety of engineering workplaces. Through quantitative and qualitative methods, our study is designed to collect insights from participants in their first 12 months on the job. Currently we are collecting and analyzing data from the first of two planned cohorts of participants. Preliminary results for the participants in the first cohort point towards interesting trends regarding participants’ frequency of activities and perception of their preparedness. Professional skills such as team meetings were listed most frequently as activities engaged in by participants, and while there were particular areas such as budgeting where participants felt less prepared, overall their perception of preparedness indicates that capstone design courses and the larger engineering curriculum they are housed within are preparing students for professional careers

    New Engineers’ First Three Months: A Study of the Transition from Capstone Design Courses to Workplaces

    Get PDF
    In preparing engineering students for the workplace, capstone classes provide unique opportunities for students to develop their professional identities and learn critical skills such as engineering design, teamwork, and self-directed learning (Lutz & Paretti). While existing research explores what and how students learn within these courses, we know much less about how capstone courses affect students’ transitions into the workplace. To address this gap, we are following 62 new graduates from four institutions during the participants’ first 12 weeks of work. Participants were drawn from three mechanical engineering programs and one engineering science program. Women were intentionally oversampled in the study, with 29 participants (47%) identifying as female. Weekly surveys were used to collect quantitative data on what types of workplace activities participants engaged in (e.g., team meetings, project budgeting, CAD modeling, engineering calculations) and qualitative data on what challenges they experience in their early work experience. In this paper, we present a descriptive analysis of the data to identify patterns across participants. Preliminary analysis of the quantitative data suggests that the most common activities for our participants were team meetings and project planning (mentioned by \u3e70% of participants) compared to formal presentations and project budgeting (mentioned by The results are intended to inform both capstone faculty and industry to identify areas of strength and improvement. Our recommendations target current practices in capstone education including course design and structure as well as industry onboarding practices

    Dispersal limitations and historical factors determine the biogeography of specialized terrestrial protists

    Get PDF
    Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan. Here, we quantified phylogeographical patterns in Hyalosphenia papilio, a large testate amoeba restricted to Holarctic Sphagnum-dominated peatlands, to test if the current distribution of its genetic diversity can be explained by historical factors or by the current distribution of suitable habitats. Phylogenetic diversity was higher in Western North America, corresponding to the inferred geographical origin of the H. papilio complex, and was lower in Eurasia despite extensive suitable habitats. These results suggest that patterns of phylogenetic diversity and distribution can be explained by the history of Holarctic Sphagnum peatland range expansions and contractions in response to Quaternary glaciations that promoted cladogenetic range evolution, rather than the contemporary distribution of suitable habitats. Species distributions were positively correlated with climatic niche breadth, suggesting that climatic tolerance is key to dispersal ability in H. papilio. This implies that, at least for large and specialized terrestrial micro-organisms, propagule dispersal is slow enough that historical processes may contribute to their diversification and phylogeographical patterns and may partly explain their very high overall diversity

    Quenched Lattice QCD with Domain Wall Fermions and the Chiral Limit

    Get PDF
    Quenched QCD simulations on three volumes, 83×8^3 \times, 123×12^3 \times and 163×3216^3 \times 32 and three couplings, β=5.7\beta=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (\mres) whose size decreases as the separation between the domain walls (LsL_s) is increased. However, at stronger couplings much larger values of LsL_s are required to achieve a given physical value of \mres. For β=6.0\beta=6.0 and Ls=16L_s=16, we find \mres/m_s=0.033(3), while for β=5.7\beta=5.7, and Ls=48L_s=48, \mres/m_s=0.074(5), where msm_s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of mπ2m_\pi^2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in fπf_\pi over our entire range, with inverse lattice spacing varying between 1 and 2 GeV.Comment: 91 pages, 34 figure

    Water-Soluble Mo3S4 Clusters Bearing Hydroxypropyl Diphosphine Ligands: Synthesis, Crystal Structure, Aqueous Speciation, and Kinetics of Substitution Reactions

    Get PDF
    The [Mo3S4Cl3(dhprpe)3]+ (1+) cluster cation has been prepared by reaction between Mo3S4Cl4(PPh3)3 (solvent)2 and the watersoluble 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe, L) ligand. The crystal structure of [1]2[Mo6Cl14] has been determined by X-ray diffraction methods and shows the typical incomplete cuboidal structure with a capping and three bridging sulfides. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of the diphosphine ligand. Depending on the pH, the hydroxo group of the functionalized diphosphine can substitute the chloride ligands and coordinate to the cluster core to give new clusters with tridentate deprotonated dhprpe ligands of formula [Mo3S4(dhprpe-H)3]+ (2+). A detailed study based on stopped-flow, 31P{1H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of acid−base equilibria and the kinetics of interconversion between the 1+ and the 2+ forms. Both conversion of 1+ to 2+ and its reverse process occur in a single kinetic step, so that reactions proceed at the three metal centers with statistically controlled kinetics. The values of the rate constants under different conditions are used to discuss on the mechanisms of opening and closing of the chelate rings with coordination or dissociation of chloride

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore