26 research outputs found

    Polyimides Based on Asymmetric Dianhydrides (II) (a-BPDA vs a-BTDA) for Resin Transfer Molding (RTM)

    Get PDF
    A new series of low-melt viscosity imide resins (10-20 poise at 280 C) were formulated from asymmetric 2,3,3',4' -benzophenone dianhydride (a-BTDA) and 4-phenylethynylphthalic endcaps, along with 3,4' -oxydianiline, 3,3' -methylenedianiline and 3,3'- diaminobenzophenone, using a solvent-free melt process. a-BTDA RTM resins exhibited higher glass transition temperatures (Tg's = 330-400 C) compared to those prepared by asymmetric 2,3,3',4' -biphenyl dianhydride, (a-BPDA, Tg's = 320-370 C). These low-melt viscosity imide resins were fabricated into polyimide/T650-35 carbon fiber composites by a RTM process. Composites properties of a-BTDA resins, such as open-hole compression and short-beam shear strength, are compared to those of composites made from a-BPDA based resin at room temperature, 288 C and 315 C. These novel, high temperature RTM imide resins exhibit outstanding properties beyond the performance of conventional RTM resins, such as epoxy and BMI resins which have use-temperatures around 177 C and 232 C for aerospace applications

    Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    Get PDF
    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM

    RTM370 Polyimide Braided Composites: Characterization and Impact Testing

    Get PDF
    RTM370 imide oligomer based on 2,3,3',4'-biphenyl dianhydride (a-BPDA), 3,4'-oxydianiline (3,4'-ODA) and terminated with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h and a high cured glass transition temperature (Tg) of 370 C. RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites display excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288degC (550 F) for 1000 h, and under hot-wet conditions. In ballistic impact testing, RTM370 triaxial braided T650-35 carbon fiber composites exhibited enhanced energy absorption at 288 C (550 F) compared to ambient temperature

    Preparation and Characterization of PETI-330/Multiwalled Carbon Nanotube

    Get PDF
    As part of an ongoing effort to incorporate multifunctionality into advanced composites, blends of PETI-330 and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to ~300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were made by injecting the mixtures at 260-280 C into an Invar tool followed by curing for 1 h at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Good quality moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of the MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed. Keywords: phenylethynyl terminated imides, high temperature polymers, nanocomposites, molding

    Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites

    Get PDF
    As part of ongoing efforts to develop multifunctional advanced composites, blends of PETI-330 and carbon nanofibers (CNF) were prepared and characterized. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the injection process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites will be discussed

    Low-melt Viscosity Polyimide Resins for Resin Transfer Molding (RTM) II

    Get PDF
    A series of polyimide resins with low-melt viscosities in the range of 10-30 poise and high glass transition temperatures (Tg s) of 330-370 C were developed for resin transfer molding (RTM) applications. These polyimide resins were formulated from 2,3,3 ,4 -biphenyltetracarboxylic dianhydride (a-BPDA) with 4-phenylethynylphthalic anhydride endcaps along with either 3,4 - oxyaniline (3,4 -ODA), 3,4 -methylenedianiline, (3,4 -MDA) or 3,3 -methylenedianiline (3,3 -MDA). These polyimides had pot lives of 30-60 minutes at 260-280 C, enabling the successful fabrication of T650-35 carbon fiber reinforced composites via RTM process. The viscosity profiles of the polyimide resins and the mechanical properties of the polyimide carbon fiber composites will be discussed

    Multifunctional, High-Temperature Nanocomposites

    Get PDF
    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well dispersed in the polymer matrices, while high-resolution transmission electron microscopy shows splits in the walls of the MWCNTs but no catastrophic breakage of tubes. To further assess processing characteristics prior to scale-up, samples containing 10, 15, and 20 weight-percent of MWCNTs were processed through a laboratory melting extruder. HRSEM of the extruded fibers shows significant alignment of MWCNTs in the flow direction (see figure). For the samples containing 20 weight-percent of MWCNTs, difficulties were encountered during feeding, and the temperature of a rotor in the extruder rose to 245 C because of buildup of frictional heat; this indicates that materials of this type having MWCNT concentrations .20 weight- percent may not be melt-processable. On the basis of the results from the foregoing characterizations, samples containing 10, 15, and 20 weight-percent of MWCNTs were scaled up to masses of .300 g and used to make specimens having dimensions of 10.2 by 15.2 by 0.32 cm. These specimens were molded by (1) injecting the mixtures, at temperatures between 260 and 280 C, into a tool made of the low-thermal-expansion alloy InvarR and then (2) curing for 1 hour at 371 C. The tool was designed to impart shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction

    Nano-Particle Enhanced Polymer Materials for Space Flight Applications

    Get PDF
    Recent advances in materials technology both in polymer chemistry and nano-materials warrant development of enhanced structures for space flight applications. This work aims to develop spacecraft structures based on polymer matrix composites (PMCs) that utilize these advancements.. Multi-wall carbon nano-tubes (MWCNTs) are expected to increase mechanical performance, lower coefficient of thermal expansion (CTE), increase electrical conductivity (mitigate electrostatic charge), increase thermal conductivity, and reduce moisture absorption of the resultant space structures. In this work, blends of MWCNTs with PETI-330 were prepared and characterized. The nano-reinforced resins were then resin transfer molded (RTM) into composite panels using M55J carbon fabric and compared to baseline panels fabricated from a cyanate ester (RS-3) or a polyimide (PETI-330) resin containing no MWCNTs. In addition, methods of pre-loading the fabric with the MWCNTs were also investigated. The effects of the MWCNTs on the resin processing properties and on the composite end-use properties were also determined

    High Temperature Resin/Carbon Nanotube Composite Fabrication

    Get PDF
    For the purpose of incorporating multifunctionality into advanced composites, blends of phenylethynyl terminated imides-330 (PETI-330) and multi-walled carbon nanotubes (MWCNTs) were prepared, characterized and fabricated into moldings. PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight percent by dry mixing the components in a ball mill. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, PETI-330/MWCNT samples were scaled up to approximately 300 g and used to fabricate moldings by injecting the mixtures at 260-280 deg C into a stainless steel tool followed by curing for 1 h at 371 deg C. The tool was designed to impart a degree of shear during the injection process in an attempt to achieve some alignment of the MWCNTs in the flow direction. Obtained moldings were subsequently characterized for thermal, mechanical, and electrical properties. The degree of dispersion and alignment of MWCNTs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/MWCNT composites will be discussed
    corecore