Polyimide Composites Properties of RTM370 Fabricated by VARTM

Kathy C. Chuang

NASA Glenn Research Center, Cleveland, OH 44135 (216) 433-3227; Kathy.Chuang@grc.nasa.gov

Jim M. Criss

M & P Technologies, Inc. Marietta, GA 30314 (770) 652-7638; jim.m.criss@mandptechnologies.com

Eric A. Mintz

Center for High Performance Polymers and Composites, Clark Atlanta University, Atlanta, GA 30314

High Temperature Polyimide Composites Materials & Processing

- **♦** Conventional PMR-15, PMR-II-50, AFR-PE4 polyimide composites all require solvent-based prepregs for part fabrication ⇒ *time consuming, costly and the use of solvents and diamines are hazardous*
- Fabricate net-shape polymer matrix composites from resins in the melt
 via RTM or VARTM using preforms ⇒ eliminate costly hand lay-up and hazard
 - ⇒ produce 30% cost saving & 20% weight saving for complex parts
 - ⇒ adaptable to automatic process


Challenge: RTM or VARTM requires low-melt viscosity that conventional polyimides derived from commercially available s-dianhydride (> 10³-10⁵ poise) cannot meet

- a-BPDA based imide resins have shown to exhibit low-melt viscosity
 (10-30 poise) at 280 °C ⇒ amenable to low-cost RTM or VARTM process
- ◆ Advance PMC temperature capability to 260-315°C beyond the state-of the-art RTM resins, such as epoxy (177 °C) & BMI (232 °C)

Objectives

- ♦ Fabricated composite panels with RTM370 imide resin (~10-30 poise) by vacuum assisted resin transfer molding (VARTM)
- Compare mechanical properties of VARTM panels to RTM panels at 288-315°C (550-600°F)

VARTM vs RTM

VARTM	RTM
Use vacuum bag	Need a mold (expensive)
Use vacuum only	Use pressure and/or vacuum
15-20 psi	200 psi
Suitable for large part	Suitable for small part/mold

RTM370 Imide Resins

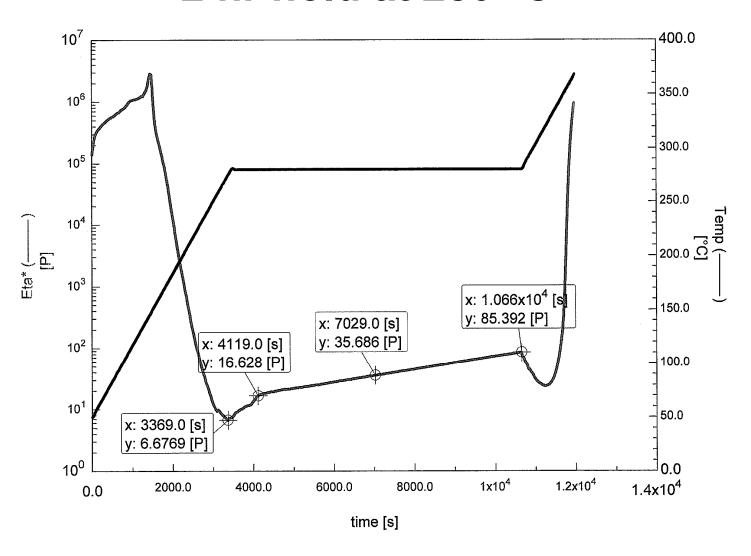
Imidized Oligomers

Advantages of imide resins containing a-dianhydrides:

- Lower melt viscosities
- Higher T_g's

Solvent-Free process:

- No organic volatiles (Green)
- Adaptable to reactive extrusion (cost saving)

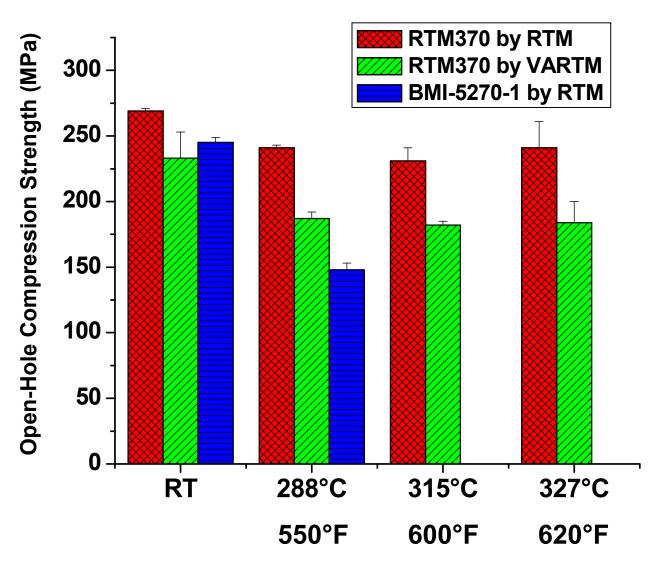

Physical Properties of Imide Oligomers/ Resins Based on a-BPDA and 4-PEPA

Resin	Diamine	Oligomer Min. η @280 °C by Brookfield ¹ (Poise)	Oligomer Min. Complex [η]* @280°C² (Poise)	Cured Resin T _g (°C) NPC ³ byTMA ⁵	Cured Resin T _g (°C) PC ⁴ @ 650°F
RTM370	3,4′-ODA	8.8	6.5	342	370⁵
RTM370 Composite				338 (DMA) ⁶	350 (DMA) ⁶

3,4' -ODA = 3,4' -Oxydianiline

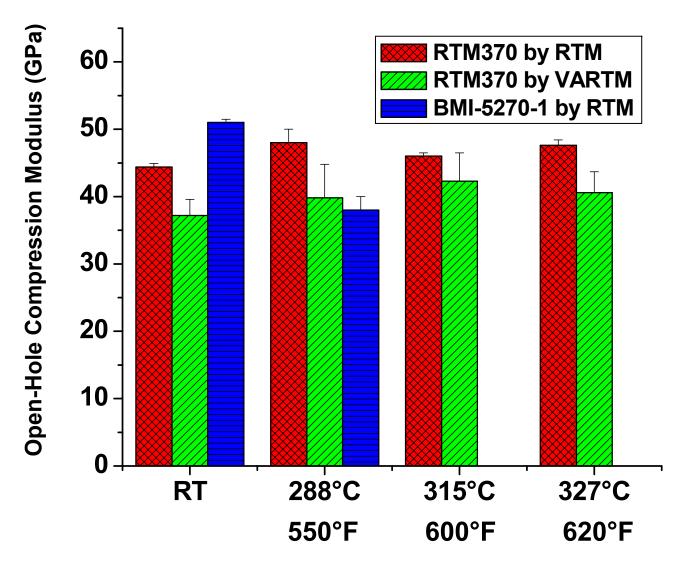
- ¹ Absolute viscosity measured by Brookfield Viscometer at 280 °C.
- ² Complex viscosity measured by Aries Rheometer, using parallel plates.
- ³ NPC = No Post cure
- ⁴ PC = Resin Postcured at 343 °C (650 °F) for 16 hrs while composite postcured@650°
- ⁵ TMA =Thermal mechanical analysis heated at 10 °C/min, using expansion mode.
- ⁶ DMA = Dynamic mechanical analysis were performed at 5 °C/min heating rate, using single cantilever.

Rheology of APS's RTM370 Imide Resin 2 hr hold at 280 °C

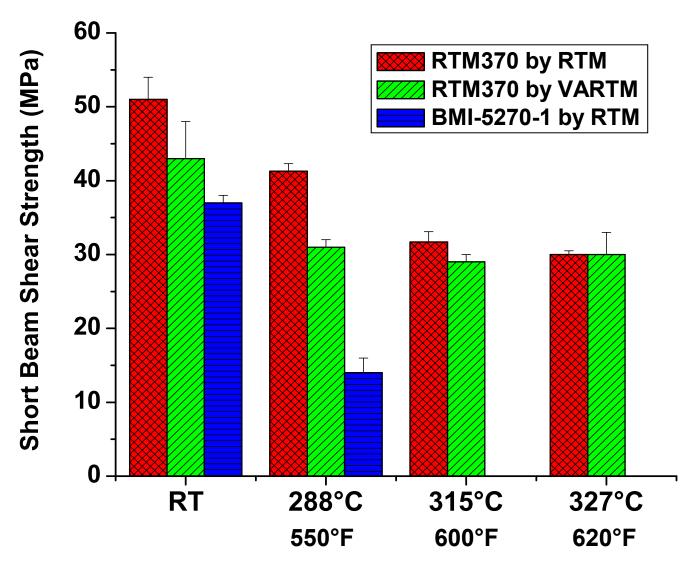


RTM370 Composite Property Comparison VARTM vs RTM (T650-35/HT sizing)

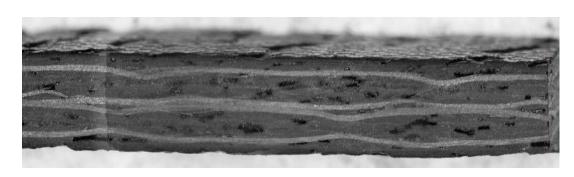
	Test	OHC Strength		OHC Modulus		SBS Strength				
	Temp.	(MPa)		(GPa)			(MPa)			
		Initial	500h	1000h	Initial	500 h	1000h	Initial	500 h	1000h
			@550°F	@550°F		@550°F	@550°F		@550°F	@550°F
			288°C	288°C		288°C	288°C		288°C	288°C
	RT	233	194	120	37	38	33	43	37	22
VARTM	288°C	186	197	135	40	42	38	31	27	17
	315°C	182		118	42		38	29	26	15
	327°C	184			41			30		16
	RT	269	287	230	44	47	44	51	54	43
DTM	288°C	242	244	198	48	44	45	41	41	41
RTM	315°C	231			46			31		
	327°C	241			48			30		


RTM370 OHC Strength VARTM vs RTM

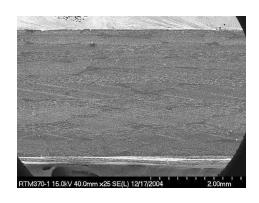
(T650-35/8HS/HT Sizing)


RTM370 OHC Modulus VARTM vs RTM

(T650-35/8HS/HT Sizing)

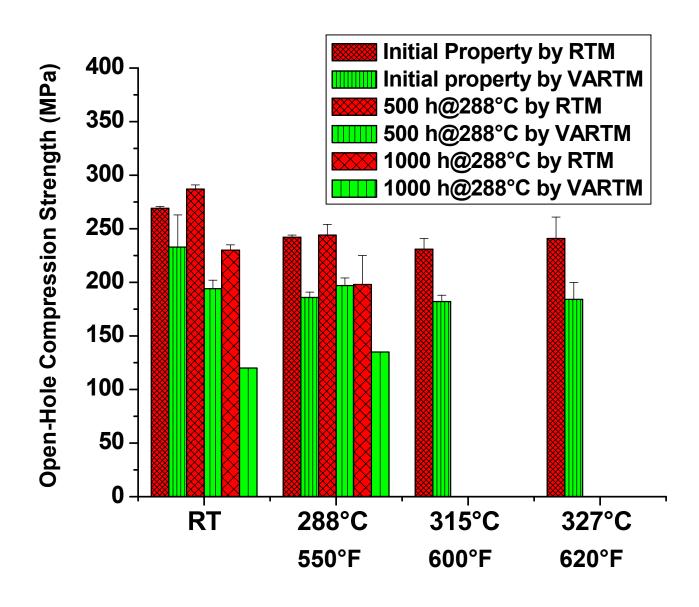


RTM370 SBS Strength VARTM vs RTM

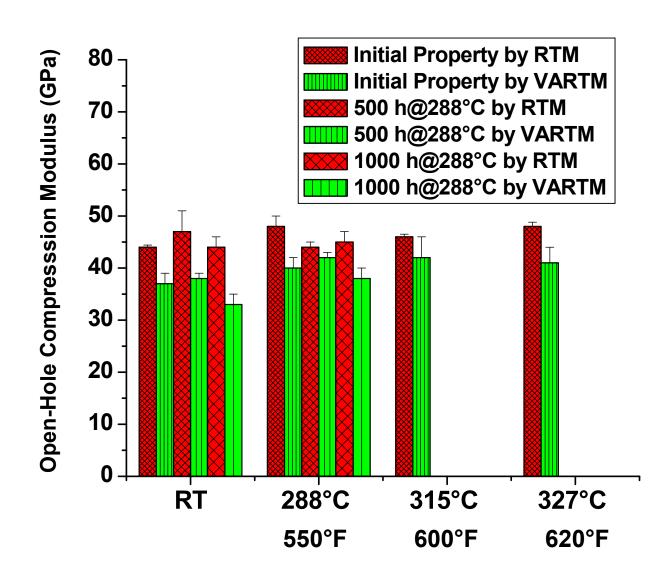

(T650-35/8HS/HT Sizing)

VARTM vs RTM

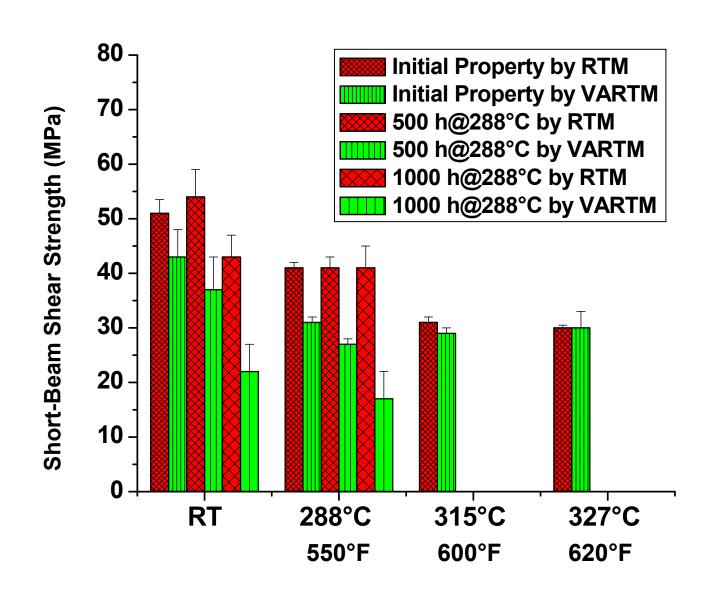
SEM of RTM370 made by VARTM Void content = ~6.5% after postcured at 650°F/8 h Resin vs fiber content =47-50% vs 53-50%


RTM370 Made by RTM Void content = ~1% Resin content = 44-47%

VARTM	RTM
15-20 psi	200 psi
Higher void content	Lower void content


Process Improvement:

- ♦ Injection at 260°C instead of 280°C ⇒ Longer pot-life, but longer injection time
- ♦ Add hold time at ~300°C, instead of direct ramp from 280°C to 371°C


Open-Hole Compression Strength of RTM370 Composites Subjected to Isothermal Aging at 288°C for 1000 h in Air

Open-Hole Compression Modulus of RTM370 Composites Subjected to Isothermal Aging at 288°C for 1000 h in Air

Short-Beam Shear Strength of RTM370 Composites Subjected to Isothermal Aging at 288°C for 1000 h in Air

Summary

- ♦ Demonstrated RTM370 imide resin can be processed by VARTM out of autoclave
- ♦ VARTM panels have higher void content than those made by RTM, due to lack of pressure
 - ⇒ VARTM panels appeared to have slightly lower OHC, but comparable SBS at high temp. & retained good mechanical properties after aging
- ♦ Need process development to reduce void content to < 2% for aerospace applications</p>
- ♦ Need to improve the resin content of VARTM panels from 47-50% to 35-40%.

Acknowlegements

- NASA Glenn Tech Transfer Fund
- Akron Polymer Systems for supplying RTM370 resin
- Ohio Third Frontier Funding (Maverick)
- ♦ NASA Co-Op Grant to Clark Atlanta U.
- Linda McCorkle (OAI) : SEM, Rheology Acid Digestion
- ◆ Brian Shonkwiler(CAU): Mechanical Testing
- ◆ Dan Scheiman (ASRC): Thermal Analysis