82 research outputs found

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL

    Comments on black holes I: The possibility of complementarity

    Get PDF
    We comment on a recent paper of Almheiri, Marolf, Polchinski and Sully who argue against black hole complementarity based on the claim that an infalling observer 'burns' as he approaches the horizon. We show that in fact measurements made by an infalling observer outside the horizon are statistically identical for the cases of vacuum at the horizon and radiation emerging from a stretched horizon. This forces us to follow the dynamics all the way to the horizon, where we need to know the details of Planck scale physics. We note that in string theory the fuzzball structure of microstates does not give any place to 'continue through' this Planck regime. AMPS argue that interactions near the horizon preclude traditional complementarity. But the conjecture of 'fuzzball complementarity' works in the opposite way: the infalling quantum is absorbed by the fuzzball surface, and it is the resulting dynamics that is conjectured to admit a complementary description.Comment: 34 pages, 6 figures, v3: clarifications & references adde

    Congenital Heart Disease–Causing Gata4 Mutation Displays Functional Deficits In Vivo

    Get PDF
    Defects of atrial and ventricular septation are the most frequent form of congenital heart disease, accounting for almost 50% of all cases. We previously reported that a heterozygous G296S missense mutation of GATA4 caused atrial and ventricular septal defects and pulmonary valve stenosis in humans. GATA4 encodes a cardiac transcription factor, and when deleted in mice it results in cardiac bifida and lethality by embryonic day (E)9.5. In vitro, the mutant GATA4 protein has a reduced DNA binding affinity and transcriptional activity and abolishes a physical interaction with TBX5, a transcription factor critical for normal heart formation. To characterize the mutation in vivo, we generated mice harboring the same mutation, Gata4 G295S. Mice homozygous for the Gata4 G295S mutant allele have normal ventral body patterning and heart looping, but have a thin ventricular myocardium, single ventricular chamber, and lethality by E11.5. While heterozygous Gata4 G295S mutant mice are viable, a subset of these mice have semilunar valve stenosis and small defects of the atrial septum. Gene expression studies of homozygous mutant mice suggest the G295S protein can sufficiently activate downstream targets of Gata4 in the endoderm but not in the developing heart. Cardiomyocyte proliferation deficits and decreased cardiac expression of CCND2, a member of the cyclin family and a direct target of Gata4, were found in embryos both homozygous and heterozygous for the Gata4 G295S allele. To further define functions of the Gata4 G295S mutation in vivo, compound mutant mice were generated in which specific cell lineages harbored both the Gata4 G295S mutant and Gata4 null alleles. Examination of these mice demonstrated that the Gata4 G295S protein has functional deficits in early myocardial development. In summary, the Gata4 G295S mutation functions as a hypomorph in vivo and leads to defects in cardiomyocyte proliferation during embryogenesis, which may contribute to the development of congenital heart defects in humans

    Friend of GATA (FOG) Interacts with the Nucleosome Remodeling and Deacetylase Complex (NuRD) to Support Primitive Erythropoiesis in Xenopus laevis

    Get PDF
    Friend of GATA (FOG) plays many diverse roles in adult and embryonic hematopoiesis, however the mechanisms by which it functions and the roles of potential interaction partners are not completely understood. Previous work has shown that overexpression of FOG in Xenopus laevis causes loss of blood suggesting that in contrast to its role in mammals, FOG might normally function to repress erythropoiesis in this species. Using loss-of-function analysis, we demonstrate that FOG is essential to support primitive red blood cell (RBC) development in Xenopus. Moreover, we show that it is specifically required to prevent excess apoptosis of circulating primitive RBCs and that in the absence of FOG, the pro-apoptotic gene Bim-1 is strongly upregulated. To identify domains of FOG that are essential for blood development and, conversely, to begin to understand the mechanism by which overexpressed FOG represses primitive erythropoiesis, we asked whether FOG mutants that are unable to interact with known co-factors retain their ability to rescue blood formation in FOG morphants and whether they repress erythropoiesis when overexpressed in wild type embryos. We find that interaction of FOG with the Nucleosome Remodeling and Deacetylase complex (NuRD), but not with C-terminal Binding Protein, is essential for normal primitive RBC development. In contrast, overexpression of all mutant and wild type constructs causes a comparable repression of primitive erythropoiesis. Together, our data suggest that a requirement for FOG and its interaction with NuRD during primitive erythropoiesis are conserved in Xenopus and that loss of blood upon FOG overexpression is due to a dominant-interfering effect

    hnRNP A1 and hnRNP F Modulate the Alternative Splicing of Exon 11 of the Insulin Receptor Gene

    Get PDF
    Exon 11 of the insulin receptor gene (INSR) is alternatively spliced in a developmentally and tissue-specific manner. Linker scanning mutations in a 5′ GA-rich enhancer in intron 10 identified AGGGA sequences that are important for enhancer function. Using RNA-affinity purification and mass spectrometry, we identified hnRNP F and hnRNP A1 binding to these AGGGA sites and also to similar motifs at the 3′ end of the intron. The hnRNPs have opposite functional effects with hnRNP F promoting and hnRNP A1 inhibiting exon 11 inclusion, and deletion of the GA-rich elements eliminates both effects. We also observed specific binding of hnRNP A1 to the 5′ splice site of intron 11. The SR protein SRSF1 (SF2/ASF) co-purified on the GA-rich enhancer and, interestingly, also competes with hnRNP A1 for binding to the splice site. A point mutation -3U→C decreases hnRNP A1 binding, increases SRSF1 binding and renders the exon constitutive. Lastly, our data point to a functional interaction between hnRNP F and SRSF1 as a mutant that eliminates SRSF1 binding to exon 11, or a SRSF1 knockdown, which prevents the stimulatory effect of hnRNP F over expression

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Investigation of Association between PFO Complicated by Cryptogenic Stroke and a Common Variant of the Cardiac Transcription Factor GATA4

    Get PDF
    Patent foramen ovale (PFO) is associated with clinical conditions including cryptogenic stroke, migraine and varicose veins. Data from studies in humans and mouse suggest that PFO and the secundum form of atrial septal defect (ASDII) exist in an anatomical continuum of septal dysmorphogenesis with a common genetic basis. Mutations in multiple members of the evolutionarily conserved cardiac transcription factor network, including GATA4, cause or predispose to ASDII and PFO. Here, we assessed whether the most prevalent variant of the GATA4 gene, S377G, was significantly associated with PFO or ASD. Our analysis of world indigenous populations showed that GATA4 S377G was largely Caucasian-specific, and so subjects were restricted to those of Caucasian descent. To select for patients with larger PFO, we limited our analysis to those with cryptogenic stroke in which PFO was a subsequent finding. In an initial study of Australian subjects, we observed a weak association between GATA4 S377G and PFO/Stroke relative to Caucasian controls in whom ASD and PFO had been excluded (OR = 2.16; p = 0.02). However, in a follow up study of German Caucasians no association was found with either PFO or ASD. Analysis of combined Australian and German data confirmed the lack of a significant association. Thus, the common GATA4 variant S377G is likely to be relatively benign in terms of its participation in CHD and PFO/Stroke
    corecore