7 research outputs found

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    The ability of ASE and GTE analysis to detect significantly associated rSNPs at different MAF.

    No full text
    <p>Fractions of rSNPs are shown for different minor allele frequencies (MAF) with significant association signals according to a Bonferroni-corrected p-value of 0.05. Each data point underlying the curves represents the fraction of significant associations within a 1% MAF bin. Sliding 5% MAF window averages are plotted for different sample sizes analyzed by ASE and GTE. Both methods detect a lower fraction of low frequency rSNPs, compared to the fraction of all the SNPs at the same frequency (black line). The ASE method detects a higher fraction of the SNPs (solid lines) with a MAF <15% than GTE (dashed lines) regardless of sample size except for the largest GTE sample set.</p

    Overlap of significantly associated rSNPs identified by ASE and GTE.

    No full text
    <p>The percentage of overlapping rSNPs detected by allele-specific expression (ASE) and genotype expression (GTE) analysis is plotted for varying numbers of samples. The top 9536 SNPs from the GTE analysis are compared with the top 38203 SNPs from the ASE analysis, which corresponds to a Bonferroni threshold of p = 0.05 for a GTE sample size of 395 and an ASE sample size of 188. The p-value cut-offs were adapted so that the same SNP top-list sizes were obtained at all sample sizes for both GTE (p-value of 1.17E-7, 1.06E-4, 1.93E-3, 6.12E-3 for n = 395, n = 188, n = 95, and n = 50 respectively) and ASE (p-value of 8.06E-8, 9.35E-5, 4.90E-3 for n = 188, n = 95, and n = 50 respectively). The vertical axes show the percentage of SNPs in the top-lists detected by both GTE and ASE analysis and the horizontal axes show the number of samples analyzed using GTE and ASE, respectively. The percentage overlap is calculated by dividing the number of overlaps with the number of top SNPs in the GTE analysis. In (A), each line shows the effect on the number of overlapping SNPs detected by ASE analysis of a specific sample size when the sample size in GTE analysis was increased. In (B), each line shows the effect on the number of overlapping rSNPs detected by GTE analysis of a specific sample size when the samples size in ASE analysis is increased.</p

    Genetic determinants of risk in pulmonary arterial hypertension: international genome-wide association studies and meta-analysis.

    Get PDF
    BACKGROUND: Rare genetic variants cause pulmonary arterial hypertension, but the contribution of common genetic variation to disease risk and natural history is poorly characterised. We tested for genome-wide association for pulmonary arterial hypertension in large international cohorts and assessed the contribution of associated regions to outcomes. METHODS: We did two separate genome-wide association studies (GWAS) and a meta-analysis of pulmonary arterial hypertension. These GWAS used data from four international case-control studies across 11 744 individuals with European ancestry (including 2085 patients). One GWAS used genotypes from 5895 whole-genome sequences and the other GWAS used genotyping array data from an additional 5849 individuals. Cross-validation of loci reaching genome-wide significance was sought by meta-analysis. Conditional analysis corrected for the most significant variants at each locus was used to resolve signals for multiple associations. We functionally annotated associated variants and tested associations with duration of survival. All-cause mortality was the primary endpoint in survival analyses. FINDINGS: A locus near SOX17 (rs10103692, odds ratio 1·80 [95% CI 1·55-2·08], p=5·13 × 10-15) and a second locus in HLA-DPA1 and HLA-DPB1 (collectively referred to as HLA-DPA1/DPB1 here; rs2856830, 1·56 [1·42-1·71], p=7·65 × 10-20) within the class II MHC region were associated with pulmonary arterial hypertension. The SOX17 locus had two independent signals associated with pulmonary arterial hypertension (rs13266183, 1·36 [1·25-1·48], p=1·69 × 10-12; and rs10103692). Functional and epigenomic data indicate that the risk variants near SOX17 alter gene regulation via an enhancer active in endothelial cells. Pulmonary arterial hypertension risk variants determined haplotype-specific enhancer activity, and CRISPR-mediated inhibition of the enhancer reduced SOX17 expression. The HLA-DPA1/DPB1 rs2856830 genotype was strongly associated with survival. Median survival from diagnosis in patients with pulmonary arterial hypertension with the C/C homozygous genotype was double (13·50 years [95% CI 12·07 to >13·50]) that of those with the T/T genotype (6·97 years [6·02-8·05]), despite similar baseline disease severity. INTERPRETATION: This is the first study to report that common genetic variation at loci in an enhancer near SOX17 and in HLA-DPA1/DPB1 is associated with pulmonary arterial hypertension. Impairment of SOX17 function might be more common in pulmonary arterial hypertension than suggested by rare mutations in SOX17. Further studies are needed to confirm the association between HLA typing or rs2856830 genotyping and survival, and to determine whether HLA typing or rs2856830 genotyping improves risk stratification in clinical practice or trials. FUNDING: UK NIHR, BHF, UK MRC, Dinosaur Trust, NIH/NHLBI, ERS, EMBO, Wellcome Trust, EU, AHA, ACClinPharm, Netherlands CVRI, Dutch Heart Foundation, Dutch Federation of UMC, Netherlands OHRD and RNAS, German DFG, German BMBF, APH Paris, INSERM, Université Paris-Sud, and French ANR

    Publisher Correction: Whole-genome sequencing of a sporadic primary immunodeficiency cohort (Nature, (2020), 583, 7814, (90-95), 10.1038/s41586-020-2265-1)

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore