36 research outputs found
β -decay half-lives of neutron-rich nuclides in the A=100-110 mass region
β-decay half-lives of neutron-rich nuclides in the A=100-110 mass region have been measured using an implantation station installed inside of the Summing NaI(Tl) (SuN) detector at the National Superconducting Cyclotron Laboratory. Accurate half-lives for these nuclides are important for nuclear astrophysics, nuclear structure, and nuclear technology. The half-lives from the present work are compared with previous measurements, showing overall good agreement
Total absorption spectroscopy of the β decay of Zr 101,102 and Tc 109
20 pags., 9 figs., 5 tabs.The β decay of Zr101,102 and Tc109 was studied using the technique of total absorption spectroscopy. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) (SuN) detector in the first-ever application of total absorption spectroscopy with a fast beam produced via projectile fragmentation. The β-decay feeding intensity and Gamow-Teller transition strength distributions were extracted for these three decays. The extracted distributions were compared to three different quasiparticle random-phase approximation (QRPA) models based on different mean-field potentials. A comparison with calculations from one of the QRPA models was performed to learn about the ground-state shape of the parent nucleus. For Zr101 and Zr102, calculations assuming a pure shape configuration (oblate or prolate) were not able to reproduce the extracted distributions. These results may indicate that some type of mixture between oblate and prolate shapes is necessary to reproduce the extracted distributions. For Tc109, a comparison of the extracted distributions with QRPA calculations suggests a dominant oblate configuration. The other two QRPA models are commonly used to provide β-decay properties in r-process network calculations. This work shows the importance of making comparisons between the experimental and theoretical β-decay distributions, rather than just half-lives and β-delayed neutron emission probabilities, as close to the r-process path as possible.A.A. acknowledges support from the Spanish Ministerio de Economía y Competitividad under Grants No. FPA2011-24553, No. FPA2014-52823-C2-1-P, and No. FPA2017-83946-C2-1-P and the program Severo Ochoa (SEV-2014-0398). P.S. acknowledges support from MCIU/AEI/FEDER,UE (Spain) under Contract No. PGC2018-093636-B-I00. S.V. acknowledges support from
Czech Science Foundation Project No. 19-14048 and the Charles University Project No. UNCE/SCI/013. This work was supported by the National Science Foundation under Grants No. PHY 1565546 (NSCL), No. PHY 1430152 (JINA-CEE), and No. PHY 1350234 (CAREER). This material is based upon work supported by the Department of
Energy National Nuclear Security Administration through the Nuclear Science and Security Consortium under Awards No. DE-NA0003180 and/or No. DE-NA000097
Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni
© 2016 The Author(s) Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40), the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons
Spectroscopy of proton-rich 79Zr : Mirror energy differences in the highly-deformed fpg shell
Energy differences between isobaric analogue states have been extracted for the A=79, 79Zr/79Y mirror pair following their population via nucleon-knockout reactions from intermediate-energy rare-isotope beams. These are the heaviest nuclei where such measurements have been made to date. The deduced mirror energy differences (MED) are compared with predictions from a new density-functional based approach, incorporating isospin-breaking effects of both Coulomb and nuclear charge-symmetry breaking and configuration mixing
“No-spin” states and low-lying structures in
Inelastic neutron scattering on solid 130XeF2 and 136XeF2 targets was utilized to populate excited levels in 130Xe and 136Xe. When calculating nuclear matrix elements vital to the understanding of double-beta decay, it is important to have a clear understanding of the low-lying level structure of both the parent and daughter nucleus. Of particular relevance to double-beta decay searches are the assignments of 0+ states. We show here that in the case of 130Xe there are several discrepancies in the adopted level structure. We found that one previous 0+ candidate level (1590 keV) can be ruled out and assigned two additional candidates (2223 and 2242 keV). In 136Xe we question the previous assignment of a 0+ level at 2582 keV. Excitation function and angular distribution measurements were utilized to make spin and parity assignments of levels and place new transitions
“No-spin” states and low-lying structures in 130Xe and 136Xe
Inelastic neutron scattering on solid 130XeF2 and 136XeF2 targets was utilized to populate excited levels in 130Xe and 136Xe. When calculating nuclear matrix elements vital to the understanding of double-beta decay, it is important to have a clear understanding of the low-lying level structure of both the parent and daughter nucleus. Of particular relevance to double-beta decay searches are the assignments of 0+ states. We show here that in the case of 130Xe there are several discrepancies in the adopted level structure. We found that one previous 0+ candidate level (1590 keV) can be ruled out and assigned two additional candidates (2223 and 2242 keV). In 136Xe we question the previous assignment of a 0+ level at 2582 keV. Excitation function and angular distribution measurements were utilized to make spin and parity assignments of levels and place new transitions
Inelastic neutron scattering studies of
Highly enriched (> 99.9%) 132Xe and 134Xe gases were converted to solid 132XeF2 and 134XeF2 and were used as scattering samples for inelastic neutron scattering measurements at the University of Kentucky Accelerator Laboratory (UKAL). Lifetimes of levels up to 3.5MeV in excitation energy in these xenon isotopes were measured using the Doppler-shift attenuation method, allowing the determination of reduced transition probabilities. Gamma rays corresponding to new transitions and levels have been observed. In particular, tentative new excited 0+ states and associated decays have been examined in an effort to elucidate the structure of these nuclei in a transitional region, and comparisons have been drawn with models which seek to describe such nuclei, e.g., the E(5) critical-point symmetry of the IBM. Newly identified potential interferences for neutrinoless double-beta decay searches involving 136Xe are also discussed
Inelastic neutron scattering studies of 132,134Xe: Elucidating structure in a transitional region and possible interferences for 0vββ searches
Highly enriched (> 99.9%) 132Xe and 134Xe gases were converted to solid 132XeF2 and 134XeF2 and were used as scattering samples for inelastic neutron scattering measurements at the University of Kentucky Accelerator Laboratory (UKAL). Lifetimes of levels up to 3.5MeV in excitation energy in these xenon isotopes were measured using the Doppler-shift attenuation method, allowing the determination of reduced transition probabilities. Gamma rays corresponding to new transitions and levels have been observed. In particular, tentative new excited 0+ states and associated decays have been examined in an effort to elucidate the structure of these nuclei in a transitional region, and comparisons have been drawn with models which seek to describe such nuclei, e.g., the E(5) critical-point symmetry of the IBM. Newly identified potential interferences for neutrinoless double-beta decay searches involving 136Xe are also discussed
Seniority structure of Xe
International audienceThe level structure of the N=82 nucleus Xe136 was studied with the inelastic neutron scattering reaction followed by γ-ray detection. A number of the spins and parities were reassigned, and many level lifetimes were determined for the first time using the Doppler-shift attenuation method. New shell-model calculations were also performed using both the full Z=50–82 model space, and a reduced model space including only the 1d5/2 and 0g7/2 orbitals. This new information characterizing Xe136 was used to identify the seniority structure of the low-lying levels and to assign (π0g7/2)υ=04, (π0g7/2)υ=24, (π0g7/2)υ=44, (π1d5/2)(π0g7/2)υ=13, and (π1d5/2)2(π0g7/2)υ=02 configurations to describe all observed states below 2.8 MeV