354 research outputs found

    El trimestre musical en Figueras

    Get PDF

    Scintillation efficiency of liquid argon in low energy neutron-argon scattering

    Get PDF
    Experiments searching for weak interacting massive particles with noble gases such as liquid argon require very low detection thresholds for nuclear recoils. A determination of the scintillation efficiency is crucial to quantify the response of the detector at low energy. We report the results obtained with a small liquid argon cell using a monoenergetic neutron beam produced by a deuterium-deuterium fusion source. The light yield relative to electrons was measured for six argon recoil energies between 11 and 120 keV at zero electric drift field.Comment: 21 pages, 19 figures, 4 table

    Study of nuclear recoils in liquid argon with monoenergetic neutrons

    Full text link
    For the development of liquid argon dark matter detectors we assembled a setup in the laboratory to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (E_kin=2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from {\alpha}-particles at working points relevant to dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the populations of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.Comment: 9 pages, 8 figures, proceedings of TAUP 2011, to be published in Journal of Physics: Conference Series (JCPS

    The Role of a Double Molecular Anchor on the Mobility and Self-Assembly of Thiols on Au(111): The Case of Mercaptobenzoic Acid

    Get PDF
    The dynamics of the self-assembly process of thiol molecules on Au(111) is affected by the interplay between molecule–substrate and molecule–molecule interactions. Therefore, it is interesting to explore the effect of a second anchor to the gold surface, in addition to the S atom, on both the order and the feasibility of phase transitions in self-assembled monolayers. To assess the role of an additional O anchor, we have compared the adsorption of two mercaptobenzoic acid isomers, 2-mercaptobenzoic acid (2-MBA) and 4-mercaptobenzoic acid (4-MBA), on Au(111). Results from scanning tunneling microscopy, X-ray photoelectron spectroscopy, electrochemical techniques, and density functional theory calculations show that the additional O anchor in 2-MBA hinders surface mobility, reducing domain size and impeding the molecular reorganization involved in phase transition to denser phases on the Au(111) substrates. This knowledge can help to predict the range order and molecular density of the thiol SAM depending on the chemical structure of the adsorbate.Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Interspecific cooperation: enhanced growth, attachment and strain-specific distribution in biofilms through Azospirillum brasilense-Pseudomonas protegens co-cultivation.

    Get PDF
    Plant-growth-promoting bacteria belonging to Azospirillum and Pseudomonas genera are major inhabitants of the rhizosphere. Both are increasingly commercialized as crops inoculants. Interspecific interaction in the rhizosphere is critical for inoculants aptness. The objective of this work was to evaluate Azospirillum and Pseudomonas interaction in mixed biofilms by co-cultivation of the model strains Azospirillum brasilense Sp245 and Pseudomonas protegens CHA0. The results revealed enhanced growth of both strains when co-cultured in static conditions. Moreover, Sp245 biofilm formed in plastic surfaces was increased 2-fold in the presence of CHA0. Confocal microscopy revealed highly structured mixed biofilms showing Sp245 mainly on the bottom and CHA0 towards the biofilm surface. In addition, A. brasilense biofilm was thicker and denser when co-cultured with P. protegens. In a colony-colony interaction assay, Sp245 changed nearby CHA0 producing small colony phenotype, which accounts for a diffusible metabolite mediator; though CHA0 spent medium did not affect Sp245 colony phenotype. Altogether, these results point to a cooperative interaction between A. brasilense Sp245 and P. protegens CHA0 in which both strains increase their static growth and produce structured mixed biofilms with a strain-specific distribution

    Evaluation of nitrous oxide emission by soybean inoculated with Bradyrhizobium strains commonly used as inoculants in South America

    Get PDF
    Aims: The purpose of this work was to analyze the agronomic and environmental performance of soybean plants inoculated with the Bradyrhizobium strains widely used as soybean biofertilizers in South America and to determine if these strains possess any functional or taxonomic trait associated with the NO emission. Methods: Bradyrhizobium japonicum E109 and CPAC 15, B. diazoefficiens USDA 110 and CPAC 7, and B. elkanii SEMIA 5019 and SEMIA 587 were used to inoculate soybean seeds. The field experiment was carried out in a soil without history of soybean cultivation in the Argentinian Humid Pampa. The natural N abundance method was applied to estimate N-fixation, and NO production was evaluated using gas chromatography. Among other physiological parameters, shoot dry weight, shoot N content, and crop yield were estimated after harvest. Results: B. japonicum inoculation produced the greatest increases in soybean growth and crop yield but also led to higher NO emissions compared to all other inoculated treatments. Plants inoculated with B. diazoefficiens released the lowest amount of NO, and their growth and yield were the least affected. Inoculation with B. elkanii resulted in intermediate NO emission fluxes and crop yield compared with B. japonicum and B. diazoefficiens. Conclusions: We found that soybean inoculation with strains of B. japonicum and B. elkanii that lack the nosZ gene led to the highest NO emissions under field conditions, but also to the highest crop yield, while inoculation with strains that carry out complete denitrification, nosZ-containing B. diazoefficiens, showed lower NO emission and lower crop yield.To the Instituto de Investigaciones Agrobiotecnológicas (INIAB); Universidad Nacional de Río Cuarto (UNRC); Consejo Nacional de Investigaciones Científcas y Tecnológicas (CONICET), Fondo Nacional de Ciencia y Tecnología (FONCyT); Instituto Nacional de Tecnología Agropecuaria (INTA). FC is Researcher of CONICET at the UNRC. DT and FD are Postdoc and PhD students at the UNRC granted by CONICET. MOC is a former PhD student at the UNRC granted by CONICET. To Mariano Cicchino from INTA Chascomús, who was in charge of sowing and yield estimation at R8. To Juan Pedro Ezquiaga from INTA Castelar, for their contribution to N2O measurements

    The ArDM experiment

    Get PDF
    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta Physica Polonica

    First results on light readout from the 1-ton ArDM liquid argon detector for dark matter searches

    Full text link
    ArDM-1t is the prototype for a next generation WIMP detector measuring both the scintillation light and the ionization charge from nuclear recoils in a 1-ton liquid argon target. The goal is to reach a minimum recoil energy of 30\,keVr to detect recoiling nuclei. In this paper we describe the experimental concept and present results on the light detection system, tested for the first time in ArDM on the surface at CERN. With a preliminary and incomplete set of PMTs, the light yield at zero electric field is found to be between 0.3-0.5 phe/keVee depending on the position within the detector volume, confirming our expectations based on smaller detector setups.Comment: 14 pages, 10 figures, v2 accepted for publication in JINS
    corecore