281 research outputs found
Interdigitation between surface-anchored polymer chains and an elastomer : consequences for adhesion promotion
We study the adhesion between a cross-linked elastomer and a flat solid
surface where polymer chains have been end-grafted. To understand the adhesive
feature of such a system, one has to study both the origin of the grafted layer
interdigitation with the network, and the end-grafted chains extraction out of
the elastomer when it comes unstuck from the solid surface. We shall tackle
here the first aspect for which we develop a partial interdigitation model that
lets us analytically predict a critical surface grafting density beyond which the layer no longer interdigitates
with the elastomer. We then relate this result with recent adhesion
measurements
Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces
Using Brownian dynamics, we simulate the fracture of polymer interfaces
reinforced by diblock connector chains. We find that for short chains the
interface fracture toughness depends linearly on the degree of polymerization
of the connector chains, while for longer chains the dependence becomes
. Based on the geometry of initial chain configuration, we propose a
scaling argument that accounts for both short and long chain limits and
crossover between them.Comment: 5 pages, 3 figure
Cavitation-induced force transition in confined viscous liquids under traction
We perform traction experiments on simple liquids highly confined between
parallel plates. At small separation rates, we observe a simple response
corresponding to a convergent Poiseuille flow. Dramatic changes in the force
response occur at high separation rates, with the appearance of a force plateau
followed by an abrupt drop. By direct observation in the course of the
experiment, we show that cavitation accounts for these features which are
reminiscent of the utmost complex behavior of adhesive films under traction.
Surprisingly enough, this is observed here in purely viscous fluids.Comment: Submitted to Physical Review Letters on May 31, 2002. Related
informations on http://www.crpp.u-bordeaux.fr/tack.htm
Continuous EB welding of the reinforcement of the CMS conductor
The Compact Muon Solenoid (CMS) is one of the general-purpose detectors to be provided for the LHC project at CERN. The design field of the CMS superconducting magnet is 4 T, the magnetic length is 12.5 m and the free bore is 6 m. In order to withstand the electro-mechanical forces during the operation of the CMS magnet, the superconducting cable embedded in a 99.998% pure aluminum matrix is reinforced with two sections of aluminum alloy EN AW-6082 assembled by continuous Electron Beam Welding (EBW). A dedicated production line has been designed by Techmeta, a leading company in the field of EBW. The production line has a total length of 70 m. Non-stop welding of each of the 20 lengths of 2.5 km, required to build the coil, will last 22 hours. EBW is the most critical process involved in the production line. The main advantage of the EBW process is to minimize the Heat Affected Zone; this is particularly important for avoiding damage to the superconducting cable located only 4.7 mm from the welded joints. Two welding guns of 20 kW each operate in parallel in a vacuum chamber fitted with dynamic airlocks. After welding, the conductor is continuously machined on the four faces and on each corner to obtain the required dimensions and surface finish. Special emphasis has been put on quality monitoring. All significant production parameters are recorded during operation and relevant samples are taken from each produced length for destructive testing purposes. In addition, a continuous phased array ultrasonic checking device is located immediately after the welding unit for the continuous welding quality control, along with a dimension laser measurement unit following the machining. (8 refs)
Growth, microstructure, and failure of crazes in glassy polymers
We report on an extensive study of craze formation in glassy polymers.
Molecular dynamics simulations of a coarse-grained bead-spring model were
employed to investigate the molecular level processes during craze nucleation,
widening, and breakdown for a wide range of temperature, polymer chain length
, entanglement length and strength of adhesive interactions between
polymer chains. Craze widening proceeds via a fibril-drawing process at
constant drawing stress. The extension ratio is determined by the entanglement
length, and the characteristic length of stretched chain segments in the
polymer craze is . In the craze, tension is mostly carried by the
covalent backbone bonds, and the force distribution develops an exponential
tail at large tensile forces. The failure mode of crazes changes from
disentanglement to scission for , and breakdown through scission
is governed by large stress fluctuations. The simulations also reveal
inconsistencies with previous theoretical models of craze widening that were
based on continuum level hydrodynamics
Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements and Crazing
Large-scale molecular simulations are performed to investigate tensile
failure of polymer interfaces as a function of welding time . Changes in the
tensile stress, mode of failure and interfacial fracture energy are
correlated to changes in the interfacial entanglements as determined from
Primitive Path Analysis. Bulk polymers fail through craze formation, followed
by craze breakdown through chain scission. At small welded interfaces are
not strong enough to support craze formation and fail at small strains through
chain pullout at the interface. Once chains have formed an average of about one
entanglement across the interface, a stable craze is formed throughout the
sample. The failure stress of the craze rises with welding time and the mode of
craze breakdown changes from chain pullout to chain scission as the interface
approaches bulk strength. The interfacial fracture energy is calculated
by coupling the simulation results to a continuum fracture mechanics model. As
in experiment, increases as before saturating at the average
bulk fracture energy . As in previous simulations of shear strength,
saturation coincides with the recovery of the bulk entanglement density. Before
saturation, is proportional to the areal density of interfacial
entanglements. Immiscibiltiy limits interdiffusion and thus suppresses
entanglements at the interface. Even small degrees of immisciblity reduce
interfacial entanglements enough that failure occurs by chain pullout and
Cell transformation assays for prediction of carcinogenic potential: State of the science and future research needs
Copyright @ 2011 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting
On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion
Surface roughness has a huge impact on many important phenomena. The most
important property of rough surfaces is the surface roughness power spectrum
C(q). We present surface roughness power spectra of many surfaces of practical
importance, obtained from the surface height profile measured using optical
methods and the Atomic Force Microscope. We show how the power spectrum
determines the contact area between two solids. We also present applications to
sealing, rubber friction and adhesion for rough surfaces, where the power
spectrum enters as an important input.Comment: Topical review; 82 pages, 61 figures; Format: Latex (iopart). Some
figures are in Postscript Level
- …